Phân tích đa thức thành nhân tử
x4- 2x3+2x-1
Phân tích đa thức thành nhân tử : x^4 - 2x^3 + 2x - 1
\(x^4-2x^3+2x-1=x^3\left(x-1\right)-x^2\left(x-1\right)-x\left(x-1\right)+\left(x-1\right)=\left(x-1\right)\left(x^3-x^2-x+1\right)=\left(x-1\right)\left[x^2\left(x-1\right)-\left(x-1\right)\right]=\left(x-1\right)^2\left(x^2-1\right)=\left(x-1\right)^3\left(x+1\right)\)
\(x^4-2x^3+2x-1\)
\(=\left(x^2-1\right)\left(x^2+1\right)-2x\left(x^2-1\right)\)
\(=\left(x-1\right)^3\cdot\left(x+1\right)\)
Phân tích đa thức thành nhân tử : x^4 + 2x^3 + x^2 + x + 1
\(=x^2\left(x^2+2x+1\right)+x+1\)
\(=x^2\left(x+1\right)^2+x+1\)
\(=\left(x+1\right)\left[x^2\left(x+1\right)+1\right]\)
\(=\left(x+1\right)\left(x^3+x^2+1\right)\)
\(x^4+2x^3+x^2+x+1\)
\(=x^2\left(x+1\right)^2+\left(x+1\right)\)
\(=\left(x+1\right)\left(x^3+x^2+1\right)\)
Phân tích đa thức thành nhân tử : 4(2x + 10)(2x + 12)(x + 10)(x + 12)
Cái này đã là nhân tử rồi mà bạn
Phân tích đa thức thành nhân tử : 5x^2 - 4(x^2 - 2x + 1) - 5
\(5x^2-4\left(x^2-2x+1\right)-5=\left(5x^2-5\right)-4\left(x-1\right)^2=5\left(x^2-1\right)-4\left(x-1\right)^2=5\left(x-1\right)\left(x+1\right)-4\left(x-1\right)^2=\left(x-1\right)\left[5\left(x+1\right)-4\left(x-1\right)\right]=\left(x-1\right)\left(5x+5-4x+4\right)=\left(x-1\right)\left(x+9\right)\)
\(= \)\(5x^2-4x^2+8x-4-5\)
\(=\)\(x^2+8x-9\)
\(=x^2+9x-x-9\)
\(=(x-1)(x+9)\)
\(5x^2-4\left(x^2-2x+1\right)-5\)
\(=5x^2-4x^2+8x-4-5\)
\(=x^2+8x-9\)
\(=\left(x+9\right)\left(x-1\right)\)
Phân tích đa thức thành nhân tử
x4+x3+2x2+x+1
\(x^4+x^3+2x^2+x+1\)
\(=\left(x^4+2x^2+1\right)+\left(x^3+x\right)\)
\(=\left(x^2+1\right)^2+x\left(x^2+1\right)\)
\(=\left(x^2+1\right)\left(x^2+1+x\right)\)
x^4+x^3+2x^2+x+1
=(x^4+2x^2+1)+(x^3+x)
=(x^2+1)^2+x(x^2+1)
=(x^2+1)(x^2+x+1)
Phân tích đa thức thành nhân tử :
a) 5x2 – 4(x2 – 2x + 1) – 5
b) 9x2 + 6x – 4y2 + 4y
a)\(5x^2-4\left(x^2-2x+1\right)-5=5\left(x^2-1\right)-4\left(x-1\right)^2=5\left(x-1\right)\left(x+1\right)-4\left(x-1\right)^2=\left(x-1\right)\left(5x+5-4x+4\right)=\left(x-1\right)\left(x+9\right)\)
b) \(9x^2+6x-4y^2+4y=\left(9x^2+6x+1\right)-\left(4y^2-4y+1\right)=\left(3x+1\right)^2-\left(2y-1\right)^2=\left(3x+1-2y+1\right)\left(3x+1+2y-1\right)=\left(3x-2y+2\right)\left(3x+2y\right)\)
a: \(5x^2-4\left(x^2-2x+1\right)-5\)
\(=5x^2-4x^2+8x-4-5\)
\(=x^2+8x-9\)
\(=\left(x+9\right)\left(x-1\right)\)
b: \(9x^2+6x-4y^2+4y\)
\(=\left(3x+2y\right)\left(3x-2y\right)+2\left(3x+2y\right)\)
\(=\left(3x+2y\right)\left(3x-2y+2\right)\)
Phân tích đa thức thành nhân tử : x2 - 2x - 24
\(x^2-2x-24\)
\(=x^2-6x+4x-24\)
\(=x(x-6)+4(x-6)\)
\(=(x+4)(x-6)\)
\(x^2-2x-24\\ =x^2-2x+1-25\\ =\left(x-1\right)^2-5^2\\ =\left(x-1-5\right)\left(x-1+5\right)\\ =\left(x-6\right)\left(x+4\right)\)
\(x^2-2x-24=\left(x-6\right)\left(x+4\right)\)
Phân tích đa thức thành nhân tử: (x2 – 2x – 6)(x2 – 2x – 11) + 6
\(\left(x^2-2x-6\right)\left(x^2-2x-11\right)+6\)
\(=\left(x^2-2x\right)^2-17\left(x^2-2x\right)+66+6\)
\(=\left(x^2-2x\right)^2-17\left(x^2-2x\right)+72\)
\(=\left(x^2-2x-8\right)\left(x^2-2x-9\right)\)
\(=\left(x-4\right)\left(x+2\right)\left(x^2-2x-9\right)\)
phân tích đa thức thành nhân tử(x^2-2x).(x^2-2x-1)-6
ai giúp đi khó quá
\(\left(x^2-2x\right)\left(x^2-2x-2\right)-6=x^4-2x^3-x^2-2x^3+4x^2+2x-6\)
\(=x^4-4x^3+3x^2+2x-6\)
\(=\left(x^4+x^3\right)-\left(5x^3+5x^2\right)+\left(8x^2+8x\right)-\left(6x+6\right)\)
\(=x^3\left(x+1\right)-5x^2\left(x+1\right)+8x\left(x+1\right)-6\left(x+1\right)\)
\(=\left(x+1\right)\left(x^3-5x^2+8x-6\right)=\left(x+1\right)\left(x-3\right)\left(x^2-2x+2\right)\)
Phân tích đa thức thành nhân tử
a) x^6 - x^4 + 2x^3 + 2x^2
b) x^m+4 + x^m+1 - x - 1
Giúp mình với
a) x^6 - x^4 + 2x^3 + 2x^2
=x2(x4-x2+2x+2)
=x2[x4-2x3+2x2+2x3-4x2+4x+x2-2x+2]
=x2[x2(x2-2x+2)+2x(x2-2x+2)+(x2-2x+2)
=x2[(x2+2x+12)(x2-2x+2)]
=x2(x+1)2(x2-2x+2)
b) x^(m+4) + x^(m+1) - x - 1
Ta thấy x=-1 là nghiệm của đa thức
=>đa thức có 1 hạng tử là x+1
=>đa thức đc phân tích là
=(x+1)(xm+3-xm+2+xm+1-1)