cho hình vẽ:
Tìm HCN có trong hình vẽ ( chứng minh ra luôn nha)
C5: Cho ∆ABC có AB=AC=5cm, BC=8cm. Kẻ AH⊥BC(H∈BC) a) Chứng minh HB=HC và góc BAH=góc CAH b) Tính độ dài cạnh AH c) Kẻ HD⊥AB (D∈AB), HE⊥AC (E∈AC). Chứng minh rằng: ∆HDE cân. Vẽ hình luôn nha 🤩
a: Ta có:ΔABC cân tại A
mà AH là đường cao
nên AH vừa là đường trung tuyến vừa là đường phân giác
b: BC=8cm
nên BH=CH=4cm
=>AH=3cm
c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có
AH chung
\(\widehat{DAH}=\widehat{EAH}\)
Do đó: ΔADH=ΔAEH
Suy ra:HD=HE
hay ΔHDE cân tại H
tam giác ABC cân tại A từ D trên cạnh BC vẽ đường thẳng vuông góc BC cắt AB AC tại E và F vẽ hình chữ nhật b e và c d e f k Chứng minh a là trung điểm HK. Vẽ hình giùm mình luôn nha. Tks, :)
Để chứng minh a là trung điểm của HK, ta cần chứng minh rằng a là trung điểm của HK.
Gọi a là trung điểm của HK, ta cần chứng minh rằng HA = AK.
Ta có:
- Tam giác ABC là tam giác cân tại A, nên AH là đường cao của tam giác ABC và cắt BC thành hai phần bằng nhau. Vậy H là trung điểm của BC.
- Ta biết MN là đường thẳng vuông góc với BC, nên HK là đường cao của tam giác MNK và cắt MN thành hai phần bằng nhau. Vậy K là trung điểm của MN.
Vậy ta có AH = HK và AK là đường trung bình của tam giác AMN.
Ta cần chứng minh AK = HA.
Gọi P là giao điểm của AK và HA.
Ta có:
- Ta biết AH = HK, nên tam giác AHK là tam giác cân tại H. Vậy góc AHK = góc AKH.
- Ta biết MN là đường thẳng vuông góc với BC, nên tam giác MNK là tam giác vuông tại K. Vậy góc MNK = 90 độ.
- Ta biết AK là đường trung bình của tam giác AMN, nên góc AKH = góc MNK.
Từ các quan sát trên, ta có:
góc AHK = góc AKH = góc MNK = 90 độ.
Vậy tứ giác AKHG là hình chữ nhật với AK = HG.
Vậy ta đã chứng minh được a là trung điểm của HK.
Cho tam giác ABC có D,E,M lần lượt là trung điểm cua AB , AC , BC , kẻ AH vuông góc với BC Tại H
a) Tính BC khi DE = 6 cm
b) Tìm và chứng minh các hình thang trong hình
C) Gọi T là điểm đối xứng của H qua E . Chứng minh : Tứ giác ATCH là hình chữ nhật
Làm ko vẽ hình ko đc vẽ hình càng tốt
Sai đề nói Mình nha
Thx
Cho △ABC vuông tại A . Tia phân giác của góc B cắt cạnh AC tai E ,trên cạnh BC lấy điể F.
a, Chứng minh : ΔABE = ΔFBE
b, Tính số đo góc EFB
c, Từ A kẻ AH vuông góc BC ( H ∈ BC ) chứng minh AH // EF
( cho minh xin hình vẽ luôn nha )
C13: Cho ∆ABC cân tại A, kẻ AH⊥BC (H∈BC) a) Chứng minh: góc BAH=góc CAH. b) Cho AH=3cm, BC=8cm. Tính độ dài AC. c) KẺ HE⊥AB, HD⊥AC. Chứng minh: AE=AD. d) Chứng minh: ED//BC. Mng vẽ hình luôn nha 🤩
Cho tam giác ABC đường cao AH . Từ H kẻ HN vuông góc với AC, HM vuông góc với AB
a) Chứng minh tứ giác AMHN là hcn
b) Gọi D là điểm đối xứng của H qua M , E đối xứng với H qua N. Chứng minh AMNE là hình bình hành
c) Chứng minh A là trung điểm DE
d) Chứng minh \(DC^2=BD^2+CE^2+2BH.HC\)
Các bạn vẽ hình giúp mh rồi giải giùm câu c nha . Mh tích đúng cho các bạn nha ><
Cho đường tròn (O; R) và đường thẳng d không có điểm chung sao cho khoảng cách từ O đến d không quá 2R. Qua diêm M trên d, vẽ các tiếp tuyến MA, MB tới (O) với A, B là các tiếp điểm. Gọi H là hình chiếu vuông góc của O trên d. Vẽ Dây AB cắt OH ở K và cắt OM tại I. Tia OM cắt (O) tại E.
a, Chứng minh OM ⊥ AB và OI.OM = R 2
b, Chứng minh OK.OH = OI.OM
c, Tìm vị trí của M trên d để OAEB là hình thoi
d, Khi M di chuyên trên d, chứng minh đường thẳng AB luôn đi qua một điểm cố định
a, Theo tính chất của hai tiếp tuyến cắt nhau chứng minh được OM là đường trung trực của AB, tức OM vuông góc AB. Áp đụng hệ thức lượng trong tam giác vuông OAM chứng minh được : OI. OM = O A 2 = R 2
b, Chứng minh được: ∆OKI:∆OMH(g.g) => OK.OH = OI.OM
c, Để OAEB là hình thoi thì OA = EB. Khi đó, tam giác OAK đều, tức là
A
O
M
^
=
60
0
. Sử dụng tỉ số lượng giác của góc
A
O
M
^
, tính được OM=2OA=2R, tức là M cách O một khoảng 2R
d, Kết hợp ý a) và b) => OK.OH =
R
2
=> OK =
R
2
O
H
Mà độ dài OH không đổi nên độ dài OK không đổi
Do đó, điểm K là điểm cố định mà AB luôn đi qua khi M thay đổi
Cho hình thoi ABCD có DAB ̂ = 600. Vẽ BH ⊥ AD tại H. Gọi E đối xứng B qua H.
a) Tính các góc của hình thoi ABCD.
b) Chứng minh ∆ABD đều.
c) Chứng minh A đối xứng D qua EB.
d) Chứng minh E; D và C thẳng hàng.
e) Chứng minh AC = BE
Cho △ABC. Vẽ ra ngoài tam giác đó các tam giác ABM và ACN vuông cân ở A. Gọi D,E, F lần lượt là trung điểm của MB, BC, CN. Chứng minh:
a) BN = CM
b) BN ⊥ CM
c) △DEF là tam giác vuông cân
Vẽ cả hình giúp mình luôn nha !
1/ Cho tam giác ABC, M là trung điểm BC. Gọi H K theo thứ tự là hình chiếu của B và C trên đường thẳng AM. Chứng minh BHCK là hình bình hành và CH//BK
2/ Cho tam giác ABC, các đường trung tuyến BD và CE. Vẽ các điểm H và K sao cho E là trung điểm CH, D là trung điểm BK. Chứng minh A là trung điểm HK
3/ Cho hình bình hành ABCD (góc B < 90o). Ở phía ngoài hình bình hành, vẽ các tam giác vuông cân tại B là ABE và CBF. Chứng minh rằng DB= EF; DB vuông góc EF.
Vẽ hình dùm mình luôn nha!
Bài 2:
Dễ dàng chứng minh \(\Delta\)BEC = \(\Delta\)AEH (c.g.c) và \(\Delta\)CDB = \(\Delta\)ADK
Suy ra HA = BC. và KA = BC từ đó suy ra HA = KA (1)
Do ED là đường trung bình tam giác BAK nên ED // AK (2)
Do ED là đường trung bình tam giác HCA nên ED // AH (3)
Từ (2) và (3) theo tiên đề Ơclit suy ra A, H, K thẳng hàng (4)
Từ (1) và (4) suy ra đpcm.
Bài 1:
Hình như hơi dư thừa nhỉ? BHCK là hình bình hành thì hiển nhiên CH//BK rồi mà. Đúng hay sai thì tùy!
Giải
Dễ dàng chứng minh \(\Delta\)BMH = \(\Delta\)CMK (cạnh huyền - góc nhọn)
Suy ra ^MBH = ^MCK. Mà hai góc này ở vị trị so le trong nên BH // CK (1) và MH = MK
Xét \(\Delta\)BMK và \(\Delta\)CMH có:
MH = MK (chứng minh trên)
^BMK = ^HMC
BM = CM (do M là trung điểm BC)
Suy ra \(\Delta\)BMK = \(\Delta\)CMH (c.g.c)
Suy ra ^MBK = ^MCH. Mà hai góc này ở vị trí so le trong nên BK // CH (2)
Từ (1) và (2) suy ra tứ giác BHCK là hình bình hành (đpcm)
Bài 3:
(so với mấy bài kia hình bài này người ra đề cho chẳng đẹp chút nào:( cộng với kỹ năng vẽ xấu của mình thì nó còn xấu thế :v)
Từ đề bài ta có AD = BC (do ABCD là hình bình hành); BC = BF (do tam giác CBF vuông cân tại B) (chỗ này mình không canh mãi mà nó vẫn ko bằng trên hình vẽ). Do đó AD = BF (cùng bằng BC)
Mặt khác tam giác ABE vuông cân tại B nên AB = AE
Do AD // BC nên ^DAB + ^ABC = 180o(1)
Mặt khác ta có ^ABC + ^EBF = 360o - (^ABE + ^CBF) = 180o (2)
Từ (1) và (2) suy ra ^DAB = ^EBF (cùng bù với ^ABC)
Từ đây ta dễ dàng chứng minh được tam giác ADB = tam giác FBE (c.g.c)
Suy ra DB = EF.
b) Chịu