\(3x^2+2\sqrt{x^2+5x+1}=2-15x\)
cần gấp!!
\(\sqrt{x+5}=\frac{x^3+3x^2+15x}{3x^2+x+5}\)
đang cần gấp
hi hello
bạn đang off à?@@@@@#$^()%Ư@Q@{Ư|:"<??">>:{POIUYSDGH}
Giải các bpt sau
\(x^2+3x\ge2+\sqrt{5x^2+15x+14}\)
Đặt \(x^2+3x=a\left(a>=-\dfrac{9}{4}\right)\)
BPT sẽ trở thành \(a>=2+\sqrt{5a+14}\)
=>\(a-2>=\sqrt{5a+14}\)
=>\(\sqrt{5a+14}< =a-2\)
=>\(\left\{{}\begin{matrix}a-2>=0\\5a+14< =\left(a-2\right)^2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}a>=2\\5a+14-a^2+4a-4< =0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}a>=2\\-a^2+9a+10< =0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}a>=2\\a^2-9a-10>=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}a>=2\\\left(a-10\right)\left(a+1\right)>=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}a>=2\\\left[{}\begin{matrix}a>=10\\a< =-1\end{matrix}\right.\end{matrix}\right.\)
=>a>=10
=>\(x^2+3x>=10\)
=>\(x^2+3x-10>=0\)
=>(x+5)(x-2)>=0
=>\(\left[{}\begin{matrix}x>=2\\x< =-5\end{matrix}\right.\)
Giải Pt: \(3x^2+15x+2\sqrt{x^2+5x+1}=2\)
Giải phương trình :
3x2 + 15x + \(2\sqrt{x^2+5x+1}\)=2
\(3x^2+15x+2\sqrt{x^2+5x+1}=2\) ĐK: \(\orbr{\begin{cases}x\ge\frac{-5+\sqrt{21}}{2}\\x\le\frac{-5-\sqrt{21}}{2}\end{cases}}\)
\(\Leftrightarrow\left(3x^2+15x+3\right)+2\sqrt{x^2+5x+1}-5=0\) (1)
Đặt \(t=\sqrt{x^2+5x+1}\) \(\left(t\ge0\right)\)
\(\left(1\right)\Rightarrow3t^2+2t-5=0\)
\(\Leftrightarrow t=1\) (vì \(t\ge0\))
Hay \(\sqrt{x^2+5x+1}=1\) \(\Leftrightarrow\) \(x^2+5x+1=1\) \(\Leftrightarrow\) \(x^2+5x=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-5\\x=0\end{cases}}\) (Nhận)
Vậy S={-5;0}
xin lỗi mk ko thể gp bn đc vi mk moi hc lp 7
Giải pt:
\(3x^2+2x+3=\left(3x+1\right)\sqrt{x^2+3}\) \(x^2+3x+4=\left(x+3\right)\sqrt{x^2+x+2}\)
\(\left(4x-1\right)\sqrt{x^2+1}=2x^2+2x+1\) \(15x^2+2\left(x+1\right)\sqrt{x+2}=2-5x\)
Viết đề mà ko ai đọc được vậy :v
a) \(3x^2+2x+3=\left(3x+1\right)\sqrt{x^2+3}\)
\(\Leftrightarrow3x^2+2x+3-3x\sqrt{x^2+3}-\sqrt{x^2+3}=0\)
\(\Leftrightarrow x^2+3-x\sqrt{x^2+3}-\sqrt{x^2+3}-2x\sqrt{x^2+3}+2x^2+2x=0\)
\(\Leftrightarrow\sqrt{x^2+3}\cdot\left(\sqrt{x^2+3}-x-1\right)-2x\cdot\left(\sqrt{x^2+3}-x-1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x^2+3}-x-1\right)\left(\sqrt{x^2+3}-2x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+3}=x+1\left(x\ge-1\right)\\\sqrt{x^2+3}=2x\left(x\ge0\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=1\end{matrix}\right.\)\(\Leftrightarrow x=1\) ( thỏa mãn )
Vậy...
\(\left(4x-1\right)\sqrt{x^2+1}=2x^2+2x+1\) (1)
<=>\(\left(4x-1\right)\left[\sqrt{x^2+1}-\left(3-x\right)\right]=6x^2-11x+4\)
Xét \(\sqrt{x^2+1}+3-x=0\)
<=> \(x^2+1=x^2-6x+9\) <=>\(x=\frac{4}{3}\)(tm phương trình (1))
Xét \(\sqrt{x^2+1}+3-x\ne0\)
pt <=>\(\frac{\left(4x-1\right)\left(x^2+1-x^2+6x-9\right)}{\sqrt{x^2+1}+3-x}=\left(3x-4\right)\left(2x-1\right)\)
<=> \(\frac{\left(4x-1\right)\left(6x-8\right)}{\sqrt{x^2+1}+3-x}-\left(3x-4\right)\left(2x-1\right)=0\)
<=>\(\left(3x-4\right)\left(\frac{2\left(4x-1\right)}{\sqrt{x^2+1}+3-x}-2x+1\right)=0\)
<=>\(\left[{}\begin{matrix}x=\frac{4}{3}\left(tm\right)\\\frac{8x-2}{\sqrt{x^2+1}+3-x}-2x+1=0\left(2\right)\end{matrix}\right.\)
pt (2) <=>\(8x-2=\left(2x-1\right)\sqrt{x^2+1}-2x^2+7x-3\)
<=>\(2x^2+x+1=\left(2x-1\right)\sqrt{x^2+1}\)( đk: \(x\ge\frac{1}{2}\))
=>\(4x^4+x^2+1+4x^3+2x+4x^2=\left(2x-1\right)^2\left(x^2+1\right)\)
<=>\(4x^4+4x^3+5x^2+2x+1=4x^4-4x^3+5x^2-4x+1\)
<=>\(8x^3+6x=0\) <=> \(x\left(8x^2+6\right)=0\) <=>x=0 (do 8x2+6>0) (không t/m (2))
=>(2) vô nghiệm
Vậy pt có tập nghiệm \(S=\left\{\frac{4}{3}\right\}\)
P/s: Hơi dài :)
Mấy anh chị khác god phân tích lắm nên em đành làm cách khác:(
\(2x^2+2x+1=\left(4x-1\right)\sqrt{x^2+1}\)
Đặt \(\sqrt{x^2+1}=a\ge1\)
\(PT\Leftrightarrow-2a^2+\left(4x-1\right)a-2x+1=0\)
\(\Leftrightarrow\left(2a-1\right)\left(2x-a-1\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}a=\frac{1}{2}\left(L\right)\\2x=a+1\left(1\right)\end{matrix}\right.\)
Xét (1): Do \(a\ge1\rightarrow a+1\ge2\Rightarrow x\ge1\)
(1) \(\Leftrightarrow2x=\sqrt{x^2+1}+1\)
\(\Leftrightarrow\frac{5}{4}x-\sqrt{x^2+1}+\frac{3}{4}\left(x-\frac{4}{3}\right)=0\)
\(\Leftrightarrow\left(x-\frac{4}{3}\right)\left[\frac{\frac{3}{16}\left(3x+4\right)}{\frac{5}{4}x+\sqrt{x^2+1}}+\frac{3}{4}\right]=0\)
\(\Leftrightarrow x=\frac{4}{3}\) (vì cái ngoặc to luôn > 0 với mọi \(x\ge1\))
Vậy...
Phân tích đa thức thành nhân tử
a, 5x^3 - 15x^2
b,4x^2 - 3xy^2 + y^2
c,5/3 x^2 (x-1) - 5/3x (x-1)
d,x^2 - 2xy + 2x - 4y
e,x^2 - 4x + 4y - y^2
g,x^2 - 9 + (x-3)^2
h,5x^3 - 5x^2y - 10x^2 +10xy
k,x^3 - 4x^2 +4x - xy^2
m,3x^2 - 7x -10
n,3x^2 - 6xy + 3y^2 - 12z^2
Mk cần rất gấp mn ơi, giúp với ạ
\(\sqrt{-3x^3+5x+14}+\sqrt{-5x^3+6x+28}=\left(4-2x-x^2\right)\sqrt{2-x}\)
AI GIÚP MK VỚI MK CẦN GẤP
\(\sqrt{-3x^3+5x+14}+\sqrt{-5x^3+6x+28}=\left(4-2x-x^2\right)\sqrt{2-x}\) (ĐKXĐ: \(x\in R,x\le2\))
\(\Leftrightarrow\sqrt{\left(2-x\right)\left(3x^2+6x+7\right)}+\sqrt{\left(2-x\right)\left(5x^2+10x+14\right)}-\left(4-2x-x^2\right)\sqrt{2-x}=0\)
\(\Leftrightarrow\sqrt{2-x}\left(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}-4+2x+x^2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\left(tm\right)\\\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=4-2x-x^2\left(1\right)\end{cases}}\)
Pt \(\left(1\right)\Leftrightarrow\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+9}=-\left(x+1\right)^2+5\left(2\right)\)
Ta có: \(\left(x+1\right)^2\ge0\Rightarrow\sqrt{2\left(x+1\right)^2+4}\ge\sqrt{4}=2\)
Tương tự: \(\sqrt{5\left(x+1\right)^2+9}\ge3\). Từ đó: \(VT_{\left(2\right)}\)\(\ge2+3=5\)
Mà \(VP_{\left(2\right)}=-\left(x+1\right)^2+5\le5\) nên dấu "=" xảy ra \(\Leftrightarrow\left(x+1\right)^2=0\Leftrightarrow x=-1\)(tm)
Vậy tập nghiệm của pt cho là \(S=\left\{2;-1\right\}.\)
G= (x + a)(x + 2a)(x + 3a)(x + 4a) + a4
E = (3x + 2)(3x – 5)(x – 1)(9x + 10) + 24x2
F = 4(x2 + 15x + 50)(x2 + 18x + 72) – 3x2
D = (3x2 – x - 2)(27x2 – 15x – 50) + 24x2
Các bn giúp mk nha, mk đg cần gấp, tksss
e) Ta có: \(E=\left(3x+2\right)\left(3x-5\right)\left(x-1\right)\left(9x+10\right)+24x^2\)
\(=\left(9x^2-15x+6x-10\right)\left(9x^2+10x-9x-10\right)+24x^2\)
\(=\left(9x^2-10-9x\right)\left(9x^2-10+x\right)+24x^2\)
\(=\left(9x^2-10\right)^2-8x\left(9x^2-10\right)-9x^2+24x^2\)
\(=\left(9x^2-10\right)^2-8x\left(9x^2-10\right)+15x^2\)
\(=\left(9x^2-10\right)^2-3x\left(9x^2-10\right)-5x\left(9x^2-10\right)+15x^2\)
\(=\left(9x^2-10\right)\left(9x^2-3x-10\right)-5x\left(9x^2-10-3x\right)\)
\(=\left(9x^2-3x-10\right)\left(9x^2-5x-10\right)\)
Cho x=\(\frac{3-\sqrt{5}}{2}\). Tính P=\(x^{2018}-3x^{2017}+5x^2-15x+2017\)
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaabbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb