Đk: \(x^2+5x+1\ge0\)
\(3x^2+2\sqrt{x^2+5x+1}=2-15x\)
\(\Leftrightarrow3\left(x^2+5x+1\right)+2\sqrt{x^2+5x+1}-5=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+5x+1}=1\\\sqrt{x^2+5x+1}=-\dfrac{5}{3}\left(vn\right)\end{matrix}\right.\)
\(\Leftrightarrow x^2+5x=0\Leftrightarrow\left[{}\begin{matrix}x=-5\left(N\right)\\x=0\left(N\right)\end{matrix}\right.\)
Kl: x=-5,x=0