Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
NGUYEN ANH
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 12 2020 lúc 17:29

\(x^4-1-mx^2+m=0\)

\(\Leftrightarrow\left(x^2-1\right)\left(x^2+1\right)-m\left(x^2-1\right)=0\)

\(\Leftrightarrow\left(x^2-1\right)\left(x^2-m+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2=1\\x^2=m-1\end{matrix}\right.\)

Pt có 4 nghiệm pb \(\Leftrightarrow\left\{{}\begin{matrix}m>1\\m\ne2\end{matrix}\right.\)

Khi đó ta có: 

\(\left|x_1-x_2\right|=\left|1-\sqrt{m-1}\right|=1\)

\(\Leftrightarrow\left[{}\begin{matrix}1-\sqrt{m-1}=1\\1-\sqrt{m-1}=-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m=1\left(loại\right)\\m=5\end{matrix}\right.\)

Vậy \(m_0=5\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
6 tháng 9 2017 lúc 13:28

Đáp án A

Lăng
Xem chi tiết
Hồng Phúc
19 tháng 12 2020 lúc 15:27

Đặt \(x^2=t\left(t\ge0\right)\), phương trình trở thành:

\(t^2-2\left(m+1\right)t+2m+1=0\left(1\right)\)

Yêu cầu bài toán thỏa mãn khi phương trình \(\left(1\right)\) có hai nghiệm dương phân biệt

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=m^2>0\\t_1+t_2=2m+2>0\\t_1t_2=2m+1>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>-\dfrac{1}{2}\\m\ne0\end{matrix}\right.\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
15 tháng 5 2017 lúc 8:46

+ Khi  m - 1 = 0 ⇔ m = 1  phương trình cho trở thành:  - x 2 = 0 ⇔ x = 0

Do đó:  m = 1  không thỏa mãn đề bài.

+ Khi  m - 1 ≠ 0 ⇔ m ≠ 1

Đặt  t = x 2 t ≥ 0

Phương trình cho trở thành  m - 1 t 2 - m t + m 2 - 1 = 0 1

Phương trình cho có ba nghiệm phân biệt  ⇔ 1  có hai nghiệm  t 1 , t 2  thoả  t 1 = 0 < t 2

Khi  t 1 = 0 ⇒ m = ± 1 . Do có hai nghiệm phân biệt nên  m ≠ 1

Với  m = - 1 ⇒ t 2 = 1 2  (nhận).

Đáp án cần chọn là: C

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
29 tháng 7 2019 lúc 7:19

Đáp án là A

Nguyễn Ngọc
Xem chi tiết
Nguyễn Việt Lâm
4 tháng 2 2021 lúc 23:49

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\\Delta=\left(2m-1\right)^2-4m\left(m-2\right)>0\\x_1+x_2=\dfrac{1-2m}{m}< 0\\x_1x_2=\dfrac{m-2}{m}>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\4m+1>0\\\dfrac{1-2m}{m}< 0\\\dfrac{m-2}{m}>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m>-\dfrac{1}{4}\\\left[{}\begin{matrix}m< 0\\m>\dfrac{1}{2}\end{matrix}\right.\\\left[{}\begin{matrix}m< 0\\m>2\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}-\dfrac{1}{4}< m< 0\\m>2\end{matrix}\right.\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
17 tháng 9 2018 lúc 9:44

b) Đặt x 2  = t (t ≥ 0). Khi đó ta có phương trình: t 2  – mt – m – 1 = 0 (*)

Δ =  m 2  - 4(-m - 1) = m 2  + 4m + 4 = m + 2 2

Phương trình đã cho có 4 nghiệm phân biệt khi và chỉ khi phương trình (*) có 2 nghiệm dương phân biệt

Đề kiểm tra Toán 9 | Đề thi Toán 9

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
12 tháng 11 2017 lúc 8:09

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
20 tháng 3 2017 lúc 5:07

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Phương trình (1) có 4 nghiệm phân biệt khi phương trình (2) có hai nghiệm số dương khi

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
8 tháng 1 2018 lúc 3:32