Chứng minh: (a+b)^3= a^3+b^3+3ab(a+b)
Chứng minh các đẳng thức:
a) a 3 + b 3 = ( a + b ) 3 − 3 a b ( a + b ) ;
b) a 3 − b 3 = ( a − b ) 3 + 3 ab ( a − b ) .
Chứng minh rằng: b/ (a-b)^3+3ab×(a-b)=a^3-b^3
\(\left(a-b\right)^3+3ab\left(a-b\right)=a^3-b^3\)
\(\Leftrightarrow a^3-b^3-3a^2b+3ab^2+3ab\left(a-b\right)=a^3-b^3\)
\(\Leftrightarrow a^3-b^3-3ab\left(a-b\right)+3ab\left(a-b\right)=a^3-b^3\)
\(\Leftrightarrow a^3-b^3=a^3-b^3\) (luôn đúng)
Chứng minh rằng:
a) a^3 + b^3 = (a + b)^3 - 3ab(a + b);
b) a^3 - b^3 = (a - b)^3 + 3ab(a - b).
Áp dụng: Tính a^3 + b^3, biết a.b + = 12 và a + b = - 7
đây là môn văn mà bạn sao lại từ toán sang văn z?
Chỗ áp dụng :Ta có (a+b)^3 -3ab(a+b)
= (-7)^3 -3.12(-7)
= -343 +252
= -91
Chứng minh (a^3) - (b^3) = [(a - b)^3] - 3ab(a - b)
TA CÓ:
\(a^3-b^3=a^3-b^3-3a^2b+3a^2b-3ab^2+3ab^2\)
\(a^3-b^3=\left(a^3-3a^2b+3ab^2-b^2\right)+\left(3a^2b-3ab^2\right)\)
VẬY \(a^3-b^3=\left(a-b\right)^3+3ab\left(a-b\right)\left(ĐPCM\right)\)
Mình nghĩ bạn ghi đề lộn dấu r
Chứng minh rằng :
a) (a+b)3-3ab(a+b)=a3+b3
b) (a-b)3+3ab(a-b)=a3-b3
a)\(\left(a+b\right)^3-3ab\left(a+b\right)\)
\(=a^3+3a^2b+3ab^2+b^3-3a^2b-3ab^2\)
\(=a^3+b^3\)
b)\(\left(a-b\right)^3+3ab\left(a-b\right)\)
\(=a^3-3a^2b+3ab^2-b^3+3a^2b-3ab^2\)
\(=a^3-b^3\)
chứng minh: a^3 + b^3 = (a+b)^3 - 3ab . (a+b)
a^3 - b^3 = (a-b)^3 + 3ab . (a-b)
Trả lời:
Ta có: ( a + b )3 - 3ab . ( a + b ) = a3 + 3a2b + 3ab2 + b3 - 3a2b - 3ab2 = a3 + b3 (đpcm)
Ta có: ( a - b )3 + 3ab . ( a - b ) = a3 - 3a2b + 3ab2 - b3 + 3a2b - 3ab2 = a3 - b3 (đpcm)
Chứng minh
a) a3+b3 =(a+b)3-3ab(a+b)
b) a3-b3 =(a-b)3+3ab(a-b)
A, Biến đổi vế phải ta có :
( a+ b)^3 - 3ab(a+b)
= a^3 + 3a^2.b + 3ab^2 + b^3 - 3a^2b- 3ab^2
=a^3 + b^ 3
Vaayj VT = VP Đẳng thức đc CM
b, tương tự
a) Biến đổi vế phải , ta có:
(a + b)3 - 3ab(a + b)
= a3 + 3a2.b + 3ab2 + b3 - 3a2b - 3ab2
Vậy Vt = VP Đẳng thức được chứng minh
b) tương tự nhé
A, Biến đổi vế phải ta có :
( a+ b)^3 - 3ab(a+b)
= a^3 + 3a^2.b + 3ab^2 + b^3 - 3a^2b- 3ab^2
=a^3 + b^ 3
Vaayj VT = VP Đẳng thức đc CM
b, tương tự
Chứng minh rằng :
a. a3+b3=(a+b)3–3ab(a+b)
b. a3–b3=(a–b)3+3ab(a–b)
a. Xét VP = (a+b)3–3ab(a+b)
VP=a3+3a2b+3ab2+b3–3a2b–3ab2
VP=a3+b3
Nhận xét : VP=VT=a3+b3
b. Xét VP = (a–b)3+3ab(a–b)
VP=a3−3a2b+3ab2−b3+3a2b–3ab2
VP=a3–b3
Nhận xét : VP=VT=a3−b3
chứng minh rằng
a3+b3=(a+b)3-3ab(a+b)
a3-b3=(a-b)3+3ab(a-b)
a/ Có: VP = a3 + 3a2b + 3ab2 + b3 - 3a2b - 3ab2
= a3 + b3 (=VT)
Vậy a3 + b3 = (a + b)3 - 3ab(a + b)
b/ tương tự