cho tam giác ABC vuông tại A, BC=25 cm . đường cao AH=12 cm. a) tính HC b) tính diện tích tam giác ABC
cho tam giác ABC vuông tại A, BC=25 cm. đường cao AH=12 cm. a) tính HC b) tính diện tích tam giác ABC
Áp dụng hệ thức lượng ta có:
\(AH^2=BH.CH\)
\(\Rightarrow\)\(BH.CH=144\)
\(BH+CH=BC\)
\(\Rightarrow\)\(BH+CH=25\)
Theo hệ thức Vi-ét thì BH và CH là 2 nghiệm của phương trình:
\(x^2-25x+144=0\)
\(\Leftrightarrow\)\(\left(x-16\right)\left(x-9\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-16=0\\x-9=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=16\\x=9\end{cases}}\)
Vậy \(HC=16\)hoặc \(HC=9\)
p/s: mk k chắc cho lắm, bn tham khảo nhé
mk chưa hok đến vi ét bạn dùng cách khác đc ko ạ
Cách khác:
Ta tính được:
\(BH+CH=25\) \(\Rightarrow\)\(BH=25-CH\) (*)
\(BH.CH=144\) (1)
Thay (*) vào (1) ta được:
\(\left(25-CH\right).CH=144\)
\(\Leftrightarrow\)\(25.CH-CH^2=144\)
\(\Leftrightarrow\)\(CH^2-25.CH+144=0\)
\(\Leftrightarrow\)\(\left(CH-9\right)\left(CH-16\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}CH=9\\CH=16\end{cases}}\)
Bài 1: Cho tam giác ABC vuông tại A và có đường cao AH. Cho biết AH=24 cm và HC=18 cm. Tính: BH, ,BC,AC,AB và diện tích tam giác ABC Bài 2: Cho tam giác ABC vuông tại A và có đường cao AH. Cho biết AB= 12 cm và BC=20 cm. Tính: BH, ,AC,HC,AH và diện tích tam giác ABC Bài 3: Cho tam giác ABC vuông tại A và có đường cao AH. Cho biết AB=3 cm và AC=4 cm. Tính: BH, ,BC,HC,AH và diện tích tam giác ABC Bài 4: Cho tam giác ABC vuông tại A và có đường cao AH. Cho biết AC=15 cm và AH =12 cm. Tính: BH, ,BC,AB,AH và diện tích tam giác ABC Bài 5:Cho tam giác ABC vuông tại A và có đường cao AH. Cho biết AB=20 cm và HC=9cm. Tính: BH, ,BC,AC,AH và diện tích tam giác ABC
Bài 5:
Ta có: \(AB^2=BH\cdot BC\)
\(\Leftrightarrow BH\left(BH+9\right)=400\)
\(\Leftrightarrow BH^2+25HB-16HB-400=0\)
\(\Leftrightarrow BH=16\left(cm\right)\)
hay BC=25(cm)
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AC=15\left(cm\right)\\AH=12\left(cm\right)\end{matrix}\right.\)
cho tam giác abc vuông tại a, đường cao ah. biết hb = 25 cm, hc = 64 cm tính diện tích tam giác abc
Lời giải:
$BC=BH+CH=25+64=89$ (cm)
Áp dụng công thức hệ thức lượng trong tam giác vuông:
$AH^2=BH.CH=25.64\Rightarrow AH=40$ (cm)
Diện tích tam giác $ABC$ là: $AH.BC:2=40.89:2=1780$ (cm2)
Cho tam giác ABC có AB = 6 cm ; AC = 4,5 cm ; BC = 7,5 cm a) chứng minh tam giác ABC vuông tại A b) Kẻ đường cao AH (H thuộc BC) tính BH, HC, AH và góc B,C của tam giác c) Tính diện tích tam giác ABC d) tìm vị trí điểm M để diện tích tam giác ABC bằng diện tích tam giác MBC
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
c: \(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{6\cdot4.5}{2}=3\cdot4.5=13.5\left(cm^2\right)\)
Cho tam giác ABC vuông tại A có AB = 12 cm ; AC = 16 cm vẽ AH là đường cao, AM là đường trung tuyến của tam giác ABC
a) Tính BH ; HC ; AH
b) Tính diện tích tam giác HMA .
Mấy bài này cũng easy thôi
a) \(\Delta ABC;\widehat{A}=1v\left(gt\right)\)
\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{12^2+16^2}\)\(=20\left(cm\right)\)
Tam giác ABC đồng dạng với tam giác HBA ( \(\widehat{B}\)chung \(\widehat{BAC}=\widehat{BAH}=90^0\))
\(\Rightarrow\frac{AB}{BH}=\frac{AC}{AH}=\frac{BC}{AB}\)
hay \(\frac{12}{BH}=\frac{16}{AH}=\frac{20}{12}=\frac{10}{6}\)
\(\Rightarrow AH=\frac{16.6}{10}=9,6\left(cm\right)\)
\(\Rightarrow BH=\frac{12.6}{10}=7,2\left(cm\right)\)
\(\Rightarrow HC=BC-BH=20-7,2=12,8\)( cm )
b) \(\Delta HMA\)vuông tại H
\(\Rightarrow S_{HMA}=\frac{1}{2}HM.AH\)\(=\frac{1}{2}.2,8.9,6=13,44\left(cm^2\right)\)
Cho tam giác vuông ABC vuông góc tại A ,có AB = 30 cm , AC = 40 cm,BC =50cm .Từ A hạ đường cao AH vuông góc với BC biết HC = 38 m a tính diện tích tam giác ABC , ABH,ABC b từ H hạ đường cao HD xuống đáy AC,HE xuống đáy AC ,tính diện tích hình chữ nhật ADHE
a: \(S_{ABC}=\dfrac{AB\cdot AC}{2}=30\cdot20=600\left(cm^2\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=24\left(cm\right)\)
\(BH=\sqrt{30^2-24^2}=18\left(cm\right)\)
CH=32(cm)
\(S_{ABH}=\dfrac{24\cdot18}{2}=24\cdot9=216\left(cm^2\right)\)
\(S_{ACH}=\dfrac{24\cdot32}{2}=12\cdot32=384\left(cm^2\right)\)
b: \(AD=\dfrac{AH^2}{AB}=\dfrac{24^2}{30}=19.2\left(cm\right)\)
\(HD=\dfrac{AH\cdot HB}{AB}=\dfrac{24\cdot18}{30}=14.4\left(cm\right)\)
\(S_{AEHD}=HD\cdot AD=19.2\cdot14.4=276.48\left(cm^2\right)\)
Cho tam giác ABC vuông tại A , đường cao AH biết AH = 12cm , HC=16 cm tính diện tích tam giác ABC
Xét tam giác ABC vuông tại A, đường cao AH
* Áp dụng hệ thức : \(AH^2=HB.HC\Rightarrow HB=\dfrac{AH^2}{HC}=\dfrac{144}{16}=9\)cm
-> BC = HB + HC = 9 + 16 = 25 cm
Diện tích tam giác ABC là : \(S_{ABC}=\dfrac{1}{2}.AH.BC=\dfrac{1}{2}.12.25=150\)cm2
Áp dụng hệ thức lượng:
\(AB^2=BH.CH\Rightarrow BH=\dfrac{AH^2}{CH}=9\left(cm\right)\)
\(\Rightarrow BC=BH+CH=25\left(cm\right)\)
\(\Rightarrow S_{ABC}=\dfrac{1}{2}AH.BC=150\left(cm^2\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH^2=HB\cdot HC\)
\(\Leftrightarrow HB=\dfrac{144}{16}=9\left(cm\right)\)
Diện tích tam giác ABC là:
\(S_{ABC}=\dfrac{AH\cdot BC}{2}=\dfrac{12\cdot25}{2}=150\left(cm^2\right)\)
Cho tam giác ABC vuông tại A, đường cao AH. Gọi E và F lần lượt là hình chiếu của H trên AB, AC. a) Chứng minh: AB^2 = BH . BC b) Chứng minh: AH^2 = HB . HC c) Chứng minh tam giác AFE đồng dạng với tam giác ABC. d) Cho BC = 30 cm, AC = 12 cm, tính diện tích tam giác AEF
Cho tam giác ABC vuông tại A, đường cao AH. Gọi E và F lần lượt là hình chiếu của H trên AB, AC. a) Chứng minh: AB^2 = BH . BC b) Chứng minh: AH^2 = HB . HC c) Chứng minh tam giác AFE đồng dạng với tam giác ABC. d) Cho BC = 30 cm, AC = 12 cm, tính diện tích tam giác AEF
Cho tam giác ABC vuông tại A đường cao AH biết AB = 6 cm BC = 10 cm a) Tính độ dài đường cao AH và số đo B^ của tam giác ABC b) tính diện tích tam giác AHB
a: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC^2=10^2-6^2=64\)
=>\(AC=\sqrt{64}=8\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
=>\(AH\cdot10=6\cdot8=48\)
=>AH=48/10=4,8(cm)
Xét ΔABC vuông tại A có \(sinB=\dfrac{AC}{BC}=\dfrac{4}{5}\)
nên \(\widehat{B}\simeq53^0\)
b: Xét ΔABC vuông tại A có AH là đường cao
nên \(BH\cdot BC=BA^2\)
=>\(BH\cdot10=6^2=36\)
=>BH=36/10=3,6(cm)
ΔAHB vuông tại H
=>\(S_{HAB}=\dfrac{1}{2}\cdot HA\cdot HB=\dfrac{1}{2}\cdot4,8\cdot3,6=8,64\left(cm^2\right)\)
a) Để tính độ dài đường cao \(AH\) và số đo \(\angle B\), chúng ta có thể sử dụng các quy tắc trong tam giác vuông.
Chúng ta biết rằng trong tam giác vuông, độ dài của đường cao \(AH\) từ đỉnh vuông \(A\) xuống cạnh huyền \(BC\) có thể được tính bằng công thức:
\[AH = \frac{1}{2} \times BC\]
Trong trường hợp này:
\[AH = \frac{1}{2} \times 10 \, \text{cm} = 5 \, \text{cm}\]
Số đo của góc \(\angle B\) có thể được tính bằng cách sử dụng hàm tan trong tam giác vuông:
\[\tan B = \frac{AH}{AB}\]
\[\angle B = \arctan\left(\frac{AH}{AB}\right)\]
Trong trường hợp này:
\[\tan B = \frac{5}{6}\]
\[\angle B = \arctan\left(\frac{5}{6}\right)\]
Bạn có thể sử dụng máy tính để tính toán giá trị chính xác của \(\angle B\).
b) Để tính diện tích tam giác \(AHB\), chúng ta sử dụng công thức diện tích tam giác:
\[S_{AHB} = \frac{1}{2} \times \text{độ dài } AH \times \text{độ dài } AB\]
Trong trường hợp này:
\[S_{AHB} = \frac{1}{2} \times 5 \, \text{cm} \times 6 \, \text{cm} = 15 \, \text{cm}^2\]
Vậy, độ dài của đường cao \(AH\) là \(5 \, \text{cm}\), số đo của góc \(\angle B\) có thể được tính, và diện tích tam giác \(AHB\) là \(15 \, \text{cm}^2\).