Tìm x,y,z thoả mãn
x+y+z+8=2\(\sqrt{x-1}\) +\(4\sqrt{y-2}\) \(+6\sqrt{z-3}\)
cho các số thực x,y,z thoả mãn x+y+z≥6.
Tìm minP=\(\dfrac{x^2}{yz+\sqrt{1+x^3}}+\dfrac{y^2}{xz+\sqrt{1+y^3}}+\dfrac{z^2}{xy+\sqrt{1+z^3}}\)
Cho mng tham khảo ạ
Với a,b,c dưog thì \(\dfrac{x^2}{a}+\dfrac{y^2}{b}+\dfrac{z^2}{c}>=\dfrac{\left(x+y+z\right)^2}{a+b+c}\)
\(P>=\dfrac{\left(x+y+z\right)^2}{xy+yz+xz+\sqrt{1+x^3}+\sqrt{1+y^3}+\sqrt{1+z^3}}\)
\(\sqrt{1+x^3}=\sqrt{\left(1+x\right)\left(1-x+x^2\right)}< =\dfrac{2+x^2}{2}\)
Dấu = xảy ra khi x=2
=>\(P>=\dfrac{\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)+x^2+y^2+z^2+6}=\dfrac{2\left(x+y+z\right)^2}{\left(x+y+z\right)^2+6}\)
Đặt t=(x+y+z)^2(t>=36)
=>P>=2t/t-6
Xét hàm số \(f\left(t\right)=\dfrac{t}{t+6}\left(t>=36\right)\)
\(f'\left(t\right)=\dfrac{6}{\left(t+6\right)^2}>=0,\forall t>=36\)
=>f(t) đồng biến
=>f(t)>=f(36)=6/7
=>P>=12/7
Dấu = xảy ra khi x=y=z=2
Cho 3 số thực dương x,y,z thoả mãn : \(x^2+y^2+z^2=48\) Tìm giá trị lớn nhất của biểu thức:
A=\(\sqrt{x^3+8}+\sqrt{x^3+8}+\sqrt{z^3+8}\)
Chắc bạn ghi nhầm căn thức thứ 2
\(A2\sqrt{2}=2\sqrt{\left(2x+4\right)\left(x^2-2x+4\right)}+2\sqrt{\left(2y+4\right)\left(y^2-2y+4\right)}+2\sqrt{\left(2z+4\right)\left(z^2-2z+4\right)}\)
\(A2\sqrt{2}\le2x+4+x^2-2x+4+2y+4+y^2-2y+4+2z+4+z^2-2z+4\)
\(A2\sqrt{2}\le x^2+y^2+z^2+24=72\)
\(A\le18\sqrt{2}\)
Dấu "=" xảy ra khi \(x=y=z=4\)
tìm x, y,x thỏa mãn \(x+y+z+8=2\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\)
ĐKXĐ : \(\hept{\begin{cases}x\ge1\\y\ge2\\z\ge3\end{cases}}\)
Với điều kiện trên thì pt đã cho tương đương với :
\(\left[\left(x-1\right)-2\sqrt{x-1}+1\right]+\left[\left(y-2\right)-4\sqrt{y-2}+4\right]+\left[\left(z-3\right)-6\sqrt{z-3}+9\right]=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2=0\)
Mà \(\left(\sqrt{x-1}-1\right)^2\ge0,\left(\sqrt{y-2}-2\right)^2\ge0,\left(\sqrt{z-3}-3\right)^2\ge0\)
\(\Rightarrow\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2\ge0\)
Vậy đẳng thức xảy ra khi \(\hept{\begin{cases}\left(\sqrt{x-1}-1\right)^2=0\\\left(\sqrt{y-2}-2\right)^2=0\\\left(\sqrt{z-3}-3\right)^2=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=2\\y=6\\z=12\end{cases}}\) (tmđk)
ĐKXĐ : {
x≥1 |
y≥2 |
z≥3 |
Với điều kiện trên thì pt đã cho tương đương với :
[(x−1)−2√x−1+1]+[(y−2)−4√y−2+4]+[(z−3)−6√z−3+9]=0
⇔(√x−1−1)2+(√y−2−2)2+(√z−3−3)2=0
Mà (√x−1−1)2≥0,(√y−2−2)2≥0,(√z−3−3)2≥0
⇒(√x−1−1)2+(√y−2−2)2+(√z−3−3)2≥0
Vậy đẳng thức xảy ra khi {
(√x−1−1)2=0 |
(√y−2−2)2=0 |
(√z−3−3)2=0 |
Tìm x,y,z thỏa mãn : \(x+y+x+8=2\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\)
Sai đề kìa \(x+y+z+8=2\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\)
\(\Leftrightarrow x+y+z+8-2\sqrt{x-1}-4\sqrt{y-2}-6\sqrt{z-3}=0\)
\(\Leftrightarrow\left(x-2\sqrt{x-1}+1-1\right)+\left(y-4\sqrt{y-2}+4-2\right)+\left(z-6\sqrt{z-3}+9-3\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}\sqrt{x-1}-1=0\\\sqrt{y-2}-2=0\\\sqrt{z-3}-3=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}\sqrt{x-1}=1\\\sqrt{y-2}=2\\\sqrt{z-3}=3\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=2\\y=6\\z=12\end{cases}}\)
Sai đề kìa x+y+z+8=2√x−1+4√y−2+6√z−3
⇔x+y+z+8−2√x−1−4√y−2−6√z−3=0
⇔(x−2√x−1+1−1)+(y−4√y−2+4−2)+(z−6√z−3+9−3)=0
⇔(√x−1−1)2+(√y−2−2)2+(√z−3−3)2=0
⇒{
√x−1−1=0 |
√y−2−2=0 |
√z−3−3=0 |
⇒{
√x−1=1 |
√y−2=2 |
√z−3=3 |
\(\frac{16}{\sqrt{x-6}}+\frac{4}{\sqrt{y-2}}+ \frac{256}{\sqrt{z-1750}} +\sqrt{x-6}+\sqrt{y-2}+\sqrt{z-1750}=44\)
Tìm 3 số x,y,z thoả mãn điều kiện
Mn ưi . Giúp mk với . Xin hậu ta ^_^
Áp dụng bđt AM-GM ta có :
\(\frac{16}{\sqrt{x-6}}+\sqrt{x-6}\ge2\sqrt{16}=8\)
\(\frac{4}{\sqrt{y-2}}+\sqrt{y-2}\ge2\sqrt{4}=4\)
\(\frac{256}{\sqrt{z-1750}}+\sqrt{z-1750}\ge2\sqrt{256}=32\)
Cộng theo vế ta được \(LHS\ge4+8+32=44\)
Dấu = xảy ra khi và chỉ khi ...
anh tự xét dấu = đi
dcv_new Mơn nhìu nha ^_^
@dcv_new điều kiện x,y của bạn ở đâu?
ĐK: x>6; y>2 và z>1750
ta có \(\frac{16}{\sqrt{x-6}}-2\frac{4}{\sqrt{x-6}}\sqrt{x-6}+\frac{x-6}{\sqrt{x-6}}=\frac{\left(4-\sqrt{x-6}\right)^2}{\sqrt{x-6}}\)
đẳng thức đã cho tương đương với
\(\frac{\left(4-\sqrt{x-6}\right)^2}{\sqrt{x-6}}+\frac{\left(2-\sqrt{y-2}\right)^2}{\sqrt{y-2}}+\frac{\left(16-\sqrt{z-1750}\right)^2}{\sqrt{z-1750}}=0\)
\(\Rightarrow\hept{\begin{cases}\sqrt{z-6}=4\\\sqrt{y-2}=2\\\sqrt{z-1750}=16\end{cases}\Leftrightarrow\hept{\begin{cases}x=22\\y=6\\z=2006\end{cases}}}\)
vậy (x;y;z)=(22;6;2006)
a.tìm a+b+c=2\(\sqrt{a}+2\sqrt{b-3}+2\sqrt{c}\)
b.tìm x,y,z thỏa mãn x+y+z+8=2\(\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\)
Mình chia thành 2 phần lời giải để thuận tiện trong việc quan sát nhé!
a. \(a+b+c=2\sqrt{a}+2\sqrt{b-3}+2\sqrt{c}\left(ĐK:a\ne0;b\ne3;c\ne0\right)\\ \Leftrightarrow a-2\sqrt{a}+1+b-3-2\sqrt{b-3}+1+c-2\sqrt{c}+1=0\\ \Leftrightarrow\left(\sqrt{a}-1\right)^2+\left(\sqrt{b-3}-1\right)^2+\left(\sqrt{c}-1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}a=1\\b=4\\c=1\end{matrix}\right.\)
Vậy \(\left(a;b;c\right)=\left(1;4;1\right)\)
b. \(x+y+z+8=2\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\left(ĐK:x\ne1;y\ne2;z\ne3\right)\\ x-1-2\sqrt{x-1}+1+y-2-4\sqrt{y-2}+4+z-3-6\sqrt{y-3}+9=0\\ \Leftrightarrow\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=2\\y=4\\z=6\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)=\left(2;4;6\right)\)
P/s: Trước khi kết luận, kiểm tra lại điều kiện thấy thỏa mãn rồi nên mình kết luận luôn nhé. Còn trong bài làm bạn nên ghi kết quả kiểm tra điều kiện cạnh giá trị mới tìm được nhé.
Tìm các số x , y , z thỏa mãn đẳng thức :
\(x+y+z+8=2\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\)
\(x+y+z+8=2\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\)
\(\Rightarrow\left(x-1\right)-2\sqrt{x-1}+1\)\(+\left(y-2\right)-4\sqrt{y-2}+4\)\(+\left(z-3\right)-6\sqrt{z-3}+9\)\(=0\)
\(\Rightarrow\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}\sqrt{x-1}-1=0\\\sqrt{y-2}-2=0\\\sqrt{z-3}-3=0\end{cases}\Rightarrow\hept{\begin{cases}\sqrt{x-1}=1\\\sqrt{y-2}=2\\\sqrt{z-3}=3\end{cases}\Rightarrow}\hept{\begin{cases}x=2\\y=6\\z=12\end{cases}}}\)
\(x+y+z+8=2\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\)
\(\left(x-1-2\sqrt{x-1}+1\right)+\left(y-2-2\sqrt{y-2}.2+4\right)+\left(z-3-2\sqrt{z-3}.3+9\right)=0\)
\(\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2=0\)( 1 )
Mà \(\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2\ge0\)( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\left(\sqrt{x-1}-1\right)^2=\left(\sqrt{y-2}-2\right)^2=\left(\sqrt{z-3}-3\right)^2=0\)
từ đó tìm được : \(x=2;y=6;z=12\)
ĐKXĐ \(x\ge1,y\ge2,z\ge3\)
Phương trình đã cho tương đương với :
\(x-1-2\sqrt{x-1}+1+y-2-4\sqrt{y-2}+4+z-3-6\sqrt{z-3}+9=0.\)
\(\Leftrightarrow\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2=0\)
Mà \(\left(\sqrt{x-1}-1\right)^2\ge0;\left(\sqrt{y-2}-2\right)^2\ge0;\left(\sqrt{z-3}-3\right)^2\ge0\)
Suy ra \(\left(\sqrt{x-1}-1\right)^2=\left(\sqrt{y-2}-2\right)^2=\left(\sqrt{z-3}-3\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{x-1}=1\\\sqrt{y-2}=2\\\sqrt{z-3}=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x-1=1\\y-2=4\\z-3=9\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\y=6\\z=12\end{cases}\left(tmđk\right).}\)
Tìm các số thực x, y, z thỏa mãn đẳng thức
\(x+y+z+8=2\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\)
\(x+y+z+8=2\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\)
\(\Leftrightarrow x+y+z+8-2\sqrt{x-1}-4\sqrt{y-2}-6\sqrt{z-3}=0\)
\(\Leftrightarrow\left[\left(x-1\right)-2\sqrt{x-1}+1\right]+\left[\left(y-2\right)-4\sqrt{y-2}+4\right]+\left[\left(z-3\right)-6\sqrt{z-3}+9\right]=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{x-1}-1=0\\\sqrt{y-2}-2=0\\\sqrt{z-3}-3=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}\sqrt{x-1}=1\\\sqrt{y-2}=2\\\sqrt{z-3}=3\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=2\\y=6\\z=12\end{cases}}\)
ĐK: \(x\ge1,y\ge2,z\ge3\).
\(x+y+z+8=2\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\)
\(\Leftrightarrow x-1-2\sqrt{x-1}+1+y-2-4\sqrt{y-2}+4+z-3-6\sqrt{z-3}+9=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{x-1}-1=0\\\sqrt{y-2}-2=0\\\sqrt{z-3}-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=6\\z=12\end{cases}}\)(thỏa mãn)
ĐK : x ≥ 1 ; y ≥ 2 ; z ≥ 3
\(\Leftrightarrow\left[\left(x-1\right)-2\sqrt{x-1}+1\right]+\left[\left(y-2\right)-4\sqrt{y-2}+4\right]+\left[\left(z-3\right)-6\sqrt{z-3}+9\right]=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{x-1}-1=0\\\sqrt{y-2}-2=0\\\sqrt{z-3}-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=6\\z=12\end{cases}}\left(tm\right)\)
Cho x,y,z \(\ge\)0 thoả mãn x+y+z \(\le\)3. Tìm Max của
\(\sqrt{1+x^2}+\sqrt{1+y^2}+\sqrt{1+z^2}+3\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\)
Ta có \(\sqrt{1+x^2}+\sqrt{2x}\le\sqrt{2}\left(x+1\right)\)
\(\sqrt{1+y^2}+\sqrt{2y}\le\sqrt{2}\left(y+1\right)\)
\(\sqrt{1+z^2}+\sqrt{2z}\le\sqrt{2}\left(z+1\right)\)
\(\Rightarrow\sqrt{1+x^2}+\sqrt{1+y^2}+\sqrt{1+z^2}+\sqrt{2x}+\sqrt{2y}+\sqrt{2z}\le\sqrt{2}\left(x+y+z+3\right)\le6\sqrt{2}\)
Ta lại có \(\sqrt{x}+\sqrt{y}+\sqrt{z}\le\sqrt{3\left(x+y+z\right)}\le3\)
Theo đề bài ta có
\(\sqrt{1+x^2}+\sqrt{1+y^2}+\sqrt{1+z^2}+3\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\)
\(\le6\sqrt{2}+\left(3-\sqrt{2}\right)\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\le3\sqrt{2}+9\)
Dấu = xảy ra khi x = y = z = 1
Cho x, y, z là các số thực dương thoả mãn xyz=1. Tìm GTNN của P = \(\frac{x^3+1}{\sqrt{x^4+y+z}}+\frac{y^3+1}{\sqrt{y^4+z+x}}+\frac{z^3+1}{\sqrt{z^4+x+y}}-\frac{8\left(xy+yz+zx\right)}{xy+yz+zx+1}\)