Lời giải:
\(x+y+z+8=2\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\)
\(\Leftrightarrow x+y+z+8-2\sqrt{x-1}-4\sqrt{y-2}-6\sqrt{z-3}=0\)
\(\Leftrightarrow (x-1)-2\sqrt{x-1}+1+(y-2)-4\sqrt{y-2}+4+(z-3)-6\sqrt{z-3}+9=0\)
\(\Leftrightarrow (\sqrt{x-1}-1)^2+(\sqrt{y-2}-2)^2+(\sqrt{z-3}-3)^2=0\)
Điều này xảy ra khi :
\(\left\{\begin{matrix} \sqrt{x-1}-1=0\rightarrow x=2\\ \sqrt{y-2}-2=0\rightarrow y=6\\ \sqrt{z-3}-3=0\rightarrow z=12\end{matrix}\right.\)