Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
illumina
Xem chi tiết
Akai Haruma
29 tháng 5 2023 lúc 19:29

Bạn xem lại xem đã biết biểu thức đúng chưa vậy?

illumina
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 5 2023 lúc 14:23

Sửa đề: x-4

\(A=\dfrac{x-2\sqrt{x}+x+4\sqrt{x}+4+2x+8}{x-4}=\dfrac{4x+2\sqrt{x}+12}{x-4}\)

Anh Quynh
Xem chi tiết
nthv_.
23 tháng 11 2021 lúc 11:37

\(\dfrac{2\left(2-\sqrt{x}\right)}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}+\dfrac{2\sqrt{x}\left(2+\sqrt{x}\right)}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}-\dfrac{2x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}=\dfrac{4-2\sqrt{x}+4\sqrt{x}+2x-2x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}=\dfrac{4-2\sqrt{x}}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}=\dfrac{2\left(2-\sqrt{x}\right)}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}=\dfrac{2}{2+\sqrt{x}}\)

Trúc Nguyễn
Xem chi tiết
Akai Haruma
4 tháng 1 2021 lúc 23:31

Lời giải:

a) ĐK: $x>0; x\neq 4$

Khi $x=36$ thì $\sqrt{x}=6$

$A=\frac{6+4}{6+2.36}=\frac{5}{39}$

b) \(B=\frac{\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)}-\frac{2(\sqrt{x}+2)}{(\sqrt{x}-2)(\sqrt{x}+2)}=\frac{-(\sqrt{x}+4)}{(\sqrt{x}-2)(\sqrt{x}+2)}\)

\(\Rightarrow P=B:A=\frac{-(\sqrt{x}+4)}{(\sqrt{x}-2)(\sqrt{x}+2)}:\frac{\sqrt{x}+4}{\sqrt{x}+2x}=\frac{\sqrt{x}+2x}{(2-\sqrt{x})(\sqrt{x}+2)}\)

Nguyễn Hoàng trung
Xem chi tiết
Akai Haruma
26 tháng 6 2021 lúc 11:32

Câu a, bạn coi lại đề xem $a^2=6-3\sqrt{3}$ hay $a=6-3\sqrt{3}$???

 

Akai Haruma
26 tháng 6 2021 lúc 11:37

b.

\(B=\frac{\sqrt{(x-2)+(x+2)+2\sqrt{(x-2)(x+2)}}}{\sqrt{x^2-4}+x+2}\)

\(=\frac{\sqrt{(\sqrt{x-2}+\sqrt{x+2})^2}}{\sqrt{x^2-4}+x+2}=\frac{\sqrt{x-2}+\sqrt{x+2}}{\sqrt{x^2-4}+x+2}=\frac{\sqrt{x-2}+\sqrt{x+2}}{\sqrt{x+2}(\sqrt{x-2}+\sqrt{x+2})}=\frac{1}{\sqrt{x+2}}\)

\(=\frac{1}{\sqrt{3+\sqrt{5}}}=\frac{\sqrt{2}}{\sqrt{6+2\sqrt{5}}}=\frac{\sqrt{2}}{\sqrt{(\sqrt{5}+1)^2}}=\frac{\sqrt{2}}{\sqrt{5}+1}\)

Akai Haruma
26 tháng 6 2021 lúc 21:56

Nguyễn Hoàng trung: Chả qua nếu $a=6-3\sqrt{3}; b=2+\sqrt{3}$ thì kết quả sẽ đẹp hơn. Còn như đề thì vẫn rút gọn được.

\(A=\frac{a-\sqrt{ab}+b}{(\sqrt{a}-\sqrt{b})^2}=\frac{a-\sqrt{ab}+b}{a-2\sqrt{ab}+b}\)

\(2a^2=12-6\sqrt{3}=(3-\sqrt{3})^2\Rightarrow a=\frac{3-\sqrt{3}}{\sqrt{2}}\) (do $a\geq 0$)

\(2b^2=4+2\sqrt{3}=(\sqrt{3}+1)^2\Rightarrow b=\frac{\sqrt{3}+1}{\sqrt{2}}\) (do $b\geq 0$)

\(\Rightarrow a+b=2\sqrt{2}; ab=\frac{\sqrt{3}(\sqrt{3}-1)(\sqrt{3}+1)}{2}=\sqrt{3}\)

Do đó: $A=\frac{2\sqrt{2}-\sqrt[4]{3}}{2\sqrt{2}-2\sqrt[4]{3}}$

 

Chử Bảo Nhi
Xem chi tiết
Akai Haruma
22 tháng 6 2023 lúc 16:24

1.

$x+3+\sqrt{x^2-6x+9}=x+3+\sqrt{(x-3)^2}=x+3+|x-3|$

$=x+3+(3-x)=6$

2.

$\sqrt{x^2+4x+4}-\sqrt{x^2}=\sqrt{(x+2)^2}-\sqrt{x^2}$

$=|x+2|-|x|=x+2-(-x)=2x+2$
3.

$\sqrt{x^2+2\sqrt{x^2-1}}-\sqrt{x^2-2\sqrt{x^2-1}}$

$=\sqrt{(\sqrt{x^2-1}+1)^2}-\sqrt{(\sqrt{x^2-1}-1)^2}$

$=|\sqrt{x^2-1}+1|+|\sqrt{x^2-1}-1|$

$=\sqrt{x^2-1}+1+|\sqrt{x^2-1}-1|$

 

Akai Haruma
22 tháng 6 2023 lúc 16:25

4.

$\frac{\sqrt{x^2-2x+1}}{x-1}=\frac{\sqrt{(x-1)^2}}{x-1}$

$=\frac{|x-1|}{x-1}=\frac{x-1}{x-1}=1$

5.

$|x-2|+\frac{\sqrt{x^2-4x+4}}{x-2}=2-x+\frac{\sqrt{(x-2)^2}}{x-2}$
$=2-x+\frac{|x-2|}{x-2}|=2-x+\frac{2-x}{x-2}=2-x+(-1)=1-x$

6.

$2x-1-\frac{\sqrt{x^2-10x+25}}{x-5}=2x-1-\frac{\sqrt{(x-5)^2}}{x-5}$

$=2x-1-\frac{|x-5|}{x-5}$

Hoàng Phú Lợi
Xem chi tiết
HT.Phong (9A5)
22 tháng 10 2023 lúc 16:31

Ngọc Mai
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 9 2021 lúc 21:08

Bài 2: 

\(x=\sqrt{4+2\sqrt{3}}=\sqrt{3}+1\)

Ta có: \(P=x^2-2x+2020\)

\(=4+2\sqrt{3}-2\left(\sqrt{3}-1\right)+2020\)

\(=4+2\sqrt{3}-2\sqrt{3}+2+2020\)

=2026

Nguyễn Lê Phước Thịnh
12 tháng 9 2021 lúc 21:03

Bài 1: 

\(A=-\dfrac{3}{4}\cdot\sqrt{9-4\sqrt{5}}\cdot\sqrt{\left(-8\right)^2\cdot\left(2+\sqrt{5}\right)^2}\)

\(=\dfrac{-3}{4}\cdot8\cdot\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)\)

=-6

Phan Hân
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 8 2023 lúc 0:18

1:

\(A=\sqrt{x^2+\dfrac{2x^2}{3}}=\sqrt{\dfrac{5x^2}{3}}=\left|\sqrt{\dfrac{5}{3}}x\right|=-x\sqrt{\dfrac{5}{3}}\)

2: \(=\left(\dfrac{\sqrt{100}+\sqrt{40}}{\sqrt{5}+\sqrt{2}}+\sqrt{6}\right)\cdot\dfrac{2\sqrt{5}-\sqrt{6}}{2}\)

\(=\dfrac{\left(2\sqrt{5}+\sqrt{6}\right)\left(2\sqrt{5}-\sqrt{6}\right)}{2}\)

\(=\dfrac{20-6}{2}=7\)