Câu a, bạn coi lại đề xem $a^2=6-3\sqrt{3}$ hay $a=6-3\sqrt{3}$???
b.
\(B=\frac{\sqrt{(x-2)+(x+2)+2\sqrt{(x-2)(x+2)}}}{\sqrt{x^2-4}+x+2}\)
\(=\frac{\sqrt{(\sqrt{x-2}+\sqrt{x+2})^2}}{\sqrt{x^2-4}+x+2}=\frac{\sqrt{x-2}+\sqrt{x+2}}{\sqrt{x^2-4}+x+2}=\frac{\sqrt{x-2}+\sqrt{x+2}}{\sqrt{x+2}(\sqrt{x-2}+\sqrt{x+2})}=\frac{1}{\sqrt{x+2}}\)
\(=\frac{1}{\sqrt{3+\sqrt{5}}}=\frac{\sqrt{2}}{\sqrt{6+2\sqrt{5}}}=\frac{\sqrt{2}}{\sqrt{(\sqrt{5}+1)^2}}=\frac{\sqrt{2}}{\sqrt{5}+1}\)
Nguyễn Hoàng trung: Chả qua nếu $a=6-3\sqrt{3}; b=2+\sqrt{3}$ thì kết quả sẽ đẹp hơn. Còn như đề thì vẫn rút gọn được.
\(A=\frac{a-\sqrt{ab}+b}{(\sqrt{a}-\sqrt{b})^2}=\frac{a-\sqrt{ab}+b}{a-2\sqrt{ab}+b}\)
\(2a^2=12-6\sqrt{3}=(3-\sqrt{3})^2\Rightarrow a=\frac{3-\sqrt{3}}{\sqrt{2}}\) (do $a\geq 0$)
\(2b^2=4+2\sqrt{3}=(\sqrt{3}+1)^2\Rightarrow b=\frac{\sqrt{3}+1}{\sqrt{2}}\) (do $b\geq 0$)
\(\Rightarrow a+b=2\sqrt{2}; ab=\frac{\sqrt{3}(\sqrt{3}-1)(\sqrt{3}+1)}{2}=\sqrt{3}\)
Do đó: $A=\frac{2\sqrt{2}-\sqrt[4]{3}}{2\sqrt{2}-2\sqrt[4]{3}}$