cho tam giác ABC vuông tại A có cạnh AB=6cm,AC=8cm.đường phân giác
cho tam giác ABC vuông tại A có AB = 6cm ; BC = 10cm trên cạnh BC lấy điểm D sao cho BD = 6cm vẽ đường vuông góc với BC cắt cạnh AC tại M câu a tính AC câu b tính chu vi tam giác ABC câu c chứng minh BM là đường phân giác của tam giác ABC
cho tam giác abc vuông tại a.ab=6cm,ac=8cm.đường cao ah.a)ab^2=bc.bh.b)tính ah,hb,hc.c)tia pg của góc ahc cắt ac tại d.tính ad,dc,Sdhc
Cho ∆ABC vuông tại A.có AB=6cm,AC=8cm.Đường cao AH.
a.Tính BC và so sánh các góc của tam giác.
b.Tia phân giác của góc HAC cắt BC tại D.Kẻ DE vuông góc với AC tại E.chứng minh rằng AD là trung trực của của HE.
c.Vẽ HK vuông góc với AC tại K.Gọi I là trung điểm của HK và AD.Chứng minh rằng ∆ HID là tam giác cân.
a: BC=căn 6^2+8^2=10cm
AB<AC<BC
=>góc C<góc B<góc A
b: Xét ΔAHD vuông tại H và ΔAED vuông tại E có
AD chung
góc HAD=góc EAD
=>ΔAHD=ΔAED
=>AH=AE và DH=DE
=>AD là trung trực của HE
Cho tam giác ABC vuông tại A có AB=6cm,BC=10,phân giác BD.tính DA,DC
Cho tam giác ABC vuông tại A có AB=6cm,AC=10,phân giác AD.tính BC,DB,DC
cho tam giác ABC vuông tại A có AB=6cm AC=8cm.
a) tính độ dài cạnh BC và chu vi tam giác ABC.
b)đường phân giác của góc B cắt AC tại D. Vẽ DH vuông với BC(H thuộc BC). Chứng minh: AB=HB
a. Áp dụng định lí Pi-ta-go vào tam giác ABC vuông, ta có
BC2=AB2+AC2
= 36 + 64 = 100
=> BC = 10 cm
chu vi tam giác ABC là: 36+64+100=200(cm)
Cho tam giác ABC vuông tại A có AB < AC ; BI là tia phân giác của góc B ( I∈ AC), vẽ IE BC tại E.
a) Cho biết AB = 6cm; AC = 8cm. Tinh độ dài cạnh BC.
b) Chứng minh tam giác IAE cân.
a) Vì ΔABC là tam giác vuông nên
=> Theo định lý Pytago : Ta có AC2 +AB2 = CB2
Hay 82 + 62 = BC2
BC 2 = 1002
=> BC = 100 cm
b) (đang nghĩ)
ủa cm IAE cân đc mak anh lại điêu r nek , dễ mak
Cho tam giác ABC vuông tại A có AB=6cm,BC=10,phân giác BD.tính DA,DC
Cho tam giác ABC vuông tại A có AB=6cm,AC=10,phân giác AD.tính BC,DB,DC
giúp mình với
Cho tam giác ABC vuông tại A, Có AB=6cm: AC=8cm
A, Độ dài cạnh BC và chu vi tam giác ABC.
,B Đường phân giác của góc B cắt AC tại D. Vẽ DH vuông góc với BC
Chứng Minh: Tam giác ABD= Tam giác HBD
C, Chứng Minh DA<DC
BC^2 = AC^2 + BA^2
= 8^2 + 6^2
= 64+36= 100
BC^2 = \(\sqrt{100}\)
⇒BC = 10
CHU VI HÌNH TAM GIÁC LÀ: 10+8+6=24(cm)
xét tam giác ΔABD vs ΔHBD cs
góc A = góc H = 90 độ
AD cạnh chung
góc B1 = góc B2
nên ΔABD = ΔHBD ( ch-gn)
xét ΔHDC cs góc H = 90 độ
⇒DH < DC ( do DC là cạnh huyền )
mà DH = DA ( ΔABD = ΔHBD )
nên DC > DA