tìm n
\(\left(\dfrac{1}{2}\right)^{2n-1}=\left(\dfrac{1}{8}\right)\)
Tìm n biết:
a) \(\dfrac{32}{\left(-2\right)^n}=4\)
b) \(\dfrac{8}{2^n}\)\(=2\)
c) \(\left(\dfrac{1}{2}\right)^{2n-1}\)\(=\dfrac{1}{8}\)
a) \(\dfrac{32}{\left(-2\right)^n}=4\)
\(\Rightarrow\left(-2\right)^n=8=\left(-2\right)^3\)
=> n = 3
b) \(\dfrac{8}{2^n}=2\)
\(\Rightarrow2^n=4=2^2\)
=> n = 2
c) \(\left(\dfrac{1}{2}\right)^{2n-1}=\dfrac{1}{8}\)
\(\Rightarrow\left(\dfrac{1}{2}\right)^{2n-1}=\left(\dfrac{1}{2}\right)^3\)
=> 2n - 1 = 3
=> 2n = 4
=> n = 2
Giải:
a) \(\dfrac{32}{\left(-2\right)^n}=4\)
\(\Rightarrow\left(-2\right)^n=32:4=8\)
\(\Rightarrow\left(-2\right)^n=8\)
Vì \(\left(-2\right)^n=2^3\) là ko thể nên n ∈ ∅
b) \(\dfrac{8}{2^n}=2\)
\(\Rightarrow2^n=8:2=4\)
\(\Rightarrow2^n=4\)
\(\Rightarrow2^n=2^2\)
\(\Rightarrow n=2\)
c) \(\left(\dfrac{1}{2}\right)^{2n-1}=\dfrac{1}{8}\)
\(\Rightarrow\left(\dfrac{1}{2}\right)^{2n-1}=\left(\dfrac{1}{2}\right)^3\)
\(\Rightarrow2n-1=3\rightarrow n=2\)
\(\left(1+\dfrac{1}{3}\right).\left(1+\dfrac{1}{8}\right).\left(1+\dfrac{1}{15}\right).......\left(1+\dfrac{1}{n^2+2n}\right)\)
Thừa số tổng quát:
\(1+\dfrac{1}{n^2+2n}=\dfrac{n^2+2n+1}{n^2+2n}=\dfrac{\left(n+1\right)^2}{\left(n+1\right)^2-1}\)
Đặt: \(\left(n+1\right)^2=t\ge0\) biểu thức được phát biểu dưới dạng: \(\dfrac{t}{t-1}\) Thay vào bài toán tìm được giá trị.
chứng minh rằng \(S=\dfrac{1}{4^2}+\dfrac{1}{6^2}+\dfrac{1}{8^2}+...+\dfrac{1}{\left(2n\right)^2}< \dfrac{1}{4}\left(n\in N,n\ge2\right)\)
\(S=\dfrac{1}{2^2}\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}\right)\)
=>\(S< =\dfrac{1}{4}\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n-1}-\dfrac{1}{n}\right)\)
=>\(S< =\dfrac{1}{4}\cdot\left(1-\dfrac{1}{n}\right)=\dfrac{1}{4}\cdot\dfrac{n-1}{n}< =\dfrac{1}{4}\)
Chứng minh rằng :
a) \(\dfrac{1.3.5.....39}{21.22.23.....40}=\dfrac{1}{2^{20}}\)
b) \(\dfrac{1.3.5....\left(2n-1\right)}{\left(n+1\right)\left(n+2\right)\left(n+3\right)...2n}=\dfrac{1}{2^n}\) với \(n\in\) N*
a) Vế trái \(=\dfrac{1.3.5...39}{21.22.23...40}=\dfrac{1.3.5.7...21.23...39}{21.22.23....40}=\dfrac{1.3.5.7...19}{22.24.26...40}\)
\(=\dfrac{1.3.5.7....19}{2.11.2.12.2.13.2.14.2.15.2.16.2.17.2.18.2.19.2.20}\\ =\dfrac{1.3.5.7.9.....19}{\left(1.3.5.7.9...19\right).2^{20}}=\dfrac{1}{2^{20}}\left(đpcm\right)\)
b) Vế trái
\(=\dfrac{1.3.5...\left(2n-1\right)}{\left(n+1\right).\left(n+2\right).\left(n+3\right)...2n}\\ =\dfrac{1.2.3.4.5.6...\left(2n-1\right).2n}{2.4.6...2n.\left(n+1\right)\left(n+2\right)...2n}\\ =\dfrac{1.2.3.4...\left(2n-1\right).2n}{2^n.1.2.3.4...n.\left(n+1\right)\left(n+2\right)...2n}\\ =\dfrac{1}{2^n}.\\ \left(đpcm\right)\)
Cho:
\(A=\dfrac{1}{1.\left(2n-1\right)}+\dfrac{1}{3.\left(2n-3\right)}+...+\dfrac{1}{\left(2n-3\right).3}+\dfrac{1}{\left(2n-1\right).1}\) \(B=1+\dfrac{1}{3}+...+\dfrac{1}{2n-1}\) (với n ∈ N*).
Tính \(\dfrac{A}{B}\)
Tính \(S=\sqrt{1+\dfrac{8.1^2-1}{1^2.3^2}}+\sqrt{1+\dfrac{8.2^2-1}{3^2.5^2}}+...+\sqrt{1+\dfrac{8.n^2-1}{\left(2n-1\right)^2.\left(2n+1\right)^2}}\)
Với\(n\in N\)
Tìm các giới hạn sau:
\(a,\dfrac{\left(2n+1\right)\left(3n-2\right)^2}{n^3+n-1}\)
\(b,\dfrac{2n-1}{3n^2+4n-1}\)
\(\lim\dfrac{\left(2n+1\right)\left(3n-2\right)^2}{n^3+n-1}=\lim\dfrac{n\left(2+\dfrac{1}{n}\right).n^2.\left(3-\dfrac{2}{n}\right)^2}{n^3\left(1+\dfrac{1}{n^2}-\dfrac{1}{n^3}\right)}\)
\(=\lim\dfrac{\left(2+\dfrac{1}{n}\right)\left(3-\dfrac{2}{n}\right)^2}{1+\dfrac{1}{n^2}-\dfrac{1}{n^3}}=\dfrac{2.3^2}{1}=18\)
\(\lim\dfrac{2n-1}{3n^2+4n-1}=\lim\dfrac{n\left(2-\dfrac{1}{n}\right)}{n^2\left(3+\dfrac{4}{n}-\dfrac{1}{n^2}\right)}=\lim\dfrac{2-\dfrac{1}{n}}{n\left(3+\dfrac{4}{n}-\dfrac{1}{n^2}\right)}=\dfrac{2}{+\infty}=0\)
Tính các tích sau:
P\(_1\) =\(\left(1+\dfrac{2}{4}\right)\left(1+\dfrac{2}{10}\right)\left(1+\dfrac{2}{18}\right)....\left(1+\dfrac{2}{n^2+3n}\right)\)
P\(_2\) =\(\left(1+\dfrac{1}{3}\right)\left(1+\dfrac{1}{8}\right)\left(1+\dfrac{1}{15}\right)....\left(1+\dfrac{2}{n^2+2n}\right)\)
P\(_3\) = \(\left(1-\dfrac{1}{1+2}\right)\left(1-\dfrac{1}{1+2+3}\right)\left(1-\dfrac{1}{1+2+3+4}\right).....\left(1-\dfrac{1}{1+2+3+4+...+n}\right)\)
P\(_4\) = \(\dfrac{2^4+4}{4^4+4}.\dfrac{6^4+4}{8^4+4}.\dfrac{8^4+4}{10^4+4}....\dfrac{18^4+4}{20^4+4}\)
Tìm các giới hạn sau:
a) \(lim\sqrt[3]{-n^3+2n^2-5}\)
b) \(lim\dfrac{1}{\sqrt{n+1}-\sqrt{n}}\)
c) \(lim\left(\dfrac{1}{n+1}-n\right)\)
d) \(lim\left(\dfrac{2n^2-1}{n+1}-2n\right)\)
e) \(lim\dfrac{2n^3+n^2-3n+1}{2-3n}\)
\(a=\lim n\left(\sqrt[3]{-1+\dfrac{2}{n}-\dfrac{5}{n^3}}\right)=+\infty.\left(-1\right)=-\infty\)
\(b=\lim\left(\sqrt{n+1}+\sqrt{n}\right)=+\infty\)
\(c=\lim n\left(\dfrac{1}{n^2+n}-1\right)=+\infty.\left(-1\right)=-\infty\)
\(d=\lim\left(\dfrac{2n^2-1-2n\left(n+1\right)}{n+1}\right)=\lim\left(\dfrac{-1-2n}{n+1}\right)=-2\)
\(e=\lim\dfrac{2n^2+n-3+\dfrac{1}{n}}{\dfrac{2}{n}-3}=\dfrac{+\infty}{-3}=-\infty\)
Tìm các giới hạn sau:
\(a,lim\dfrac{\sqrt[3]{8n^3+2n}}{-n+3}\)
\(b,lim\dfrac{\left(2n\sqrt{n}+1\right)\left(\sqrt{n}+3\right)}{\left(n-1\right)\left(3-2n\right)}\)
\(a,lim\dfrac{^3\sqrt{8n^3+2n}}{-n+3}\)
\(=lim\dfrac{^3\sqrt{8+\dfrac{2}{n^2}}}{-1+\dfrac{3}{n}}=\dfrac{^3\sqrt{8}}{-1}=\dfrac{2}{-1}=-2\)
\(\lim\dfrac{\left(2n\sqrt{n}+1\right)\left(\sqrt{n}+3\right)}{\left(n-1\right)\left(3-2n\right)}=\lim\dfrac{\left(2+\dfrac{1}{n\sqrt{n}}\right)\left(1+\dfrac{3}{\sqrt{n}}\right)}{\left(1-\dfrac{1}{n}\right)\left(\dfrac{3}{n}-2\right)}=\dfrac{2.1}{1.\left(-2\right)}=-1\)