CMR: n(n+1)(n+2) ⋮ 6 với ∀ N
CMR: n(n+1) . (n+2) ⋮ 6 với n ∈ N
Ta có: n.(n+1) là tích của hai số tự nhiên liên tiếp nên luôn chia hết cho 2
Mặt khác n.(n+1).(n+2) là tích của 3 số tự nhiên liên tiếp nên luôn chia hết cho 3
Mà (2,3)=1 nên n.(n+1).(n+2) chia hết cho 2.3=6
=> điều phải chứng minh
Vì n(n+1) chia hết cho 2
n(n+1)(n+2) chia hết cho 3
Vậy n(n+1)(n+2) chia hết cho 6
bài 1. CMR: n4-1 chia hết cho 8 với mọi n lẻ
bài 2. CMR: B=\(\frac{n^3}{6}+\frac{n^2}{2}+\frac{n}{3}\)là số nguyên với mọi n thuộc Z
bài 3. CMR: (n2+n-1)2 -1 chia hết cho 24 với mọi n thuộc Z
\(n^4-1=\left(n^2\right)^2-1^2=\left(n^2-1\right)\left(n^2+1\right)=\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)
n lẻ
=> n - 1 và n + 1 chẵn
Tích của 2 số chẵn liên tiếp sẽ chia hết cho 8
=> Biểu thức trên chia hết cho 8 với mọi n lẻ (đpcm)
ai giải giúp mình bài 2 và bài 3 với
CMR: 0+2+4+6+....+(2n-2)= n(n-1) với n thuộc N*
Lời giải:
Số số hạng của tổng:
$(2n-2-0):2+1=n$
$0+2+3+...+(2n-2)=\frac{(2n-2+0).n}{2}=\frac{2n(n-1)}{2}=n(n-1)$
Ta có đpcm.
CMR n^6-n^4-n^2+1 chia hết cho 128 với n lẻ
mọi người giúp em với !!!
Để giải bài toán này, chúng ta sẽ sử dụng Định lý Fermat nhỏ và một số kiến thức về phép chia. Trước hết, chúng ta sẽ chứng minh rằng (n^6 - n^4 - n^2 + 1) chia hết cho 2. Ta có thể viết lại biểu thức này thành: [n^6 - n^4 - n^2 + 1 = (n^6 - n^4) - (n^2 - 1) = n^4(n^2 - 1) - (n^2 - 1) = (n^4 - 1)(n^2 - 1).] Ta biết rằng nếu (n) là số lẻ, thì (n^2 - 1) là một số chẵn. Vì vậy, ((n^4 - 1)(n^2 - 1)) chia hết cho 2. Tiếp theo, chúng ta sẽ chứng minh rằng (n^6 - n^4 - n^2 + 1) chia hết cho 32. Ta có thể viết lại biểu thức này thành: [n^6 - n^4 - n^2 + 1 = (n^6 - n^4) - (n^2 - 1) = n^4(n^2 - 1) - (n^2 - 1) = (n^4 - 1)(n^2 - 1).] Ta biết rằng nếu (n) là số lẻ, thì (n^2 - 1) là một số chẵn. Vì vậy, ((n^4 - 1)(n^2 - 1)) chia hết cho 32. Cuối cùng, chúng ta sẽ chứng minh rằng (n^6 - n^4 - n^2 + 1) chia hết cho 64. Ta sẽ sử dụng Định lý Fermat nhỏ: nếu (p) là một số nguyên tố và (a) là số nguyên không chia hết cho (p), thì (a^{p-1} \equiv 1 \pmod{p}). Ở đây, chúng ta sẽ chứng minh rằng (n^6 - n^4 - n^2 + 1 \equiv 0 \pmod{64}) khi (n) là số lẻ. Chúng ta sẽ xét hai trường hợp: Trường hợp 1: (n \equiv 1 \pmod{4}). Khi đó, (n^2 \equiv 1 \pmod{4}) và (n^4 \equiv 1 \pmod{4}). Do đó, (n^6 - n^4 - n^2 + 1 \equiv 1 - 1 - 1 + 1 \equiv 0 \pmod{64}). Trường hợp 2: (n \equiv 3 \pmod{4}). Khi đó, (n^2 \equiv 1 \pmod{4}) và (n^4 \equiv 1 \pmod{4}). Do đó, (n^6 - n^4 - n^2 + 1 \equiv 1 - 1 - 1 + 1 \equiv 0 \pmod{64}). Vậy, ta có thể kết luận rằng (n^6 - n^4 - n^2 + 1) chia hết cho 128 khi (n) là số lẻ.
CMR: A = n*(n+1) * (2*n + 1) chia hết cho 6 với n là stn
1. CMR: 7n3+2009: 21 với mọi n thuộc Z
2. CMR: n là số nguyên lẻ thì B=n3+3n3n+2414 : 8
3. CMR:
A=n3 +11n11n+2016 : 6 với n thuộc Z
4. CMR: Với mọi n thuộc Z+
A=32+23n-2nn+6 : 7
cmr : n.(n+1).(n+2) chia hết cho 6 với mọi n thuộc N
ta có: n . (n+1) . (n+2) là 3 số tự nhiên liên tiếp
nên n.(n+1).(n+2) chia hết cho 2 và 3
mà: (2,3) =1 ( 2 số nguyên tố cùng nhau)
và: 2. 3=6
nên: n.(n+1).(n+2) chia hết cho 6 với mọi x e N.
Nhớ li ke
Vì n(n+1)(n+2) là 3 số tự nhiên liên tiếp
=> Tồn tại 1 số chia hết cho 2
Tồn tại 1 số chia hết cho 3
Mà U7CLN(2,3)=1
=> n(n+1)(n+2) chia hết cho 2.3=6
=> ĐPCM
1+1=2 đúng ko
Ta có A = n2(n - 1) + 2n(1 - n)
= n2(n - 1) - 2n(n - 1)
= (n - 1)(n2 - 2n)
= (n - 2)(n - 1)n \(⋮\)6 (tích 3 số nguyên liên tiếp)
=> A \(⋮6\forall n\inℤ\)
CMR:
(n-1)2(n+1)+(n2-1) luôn chia hết cho 6 với mọi số nguyên n.
\(\left(n-1\right)^2\cdot\left(n+1\right)+\left(n^2-1\right)\)
\(=\left(n-1\right)\left(n+1\right)\left(n-1+1\right)\)
\(=n\left(n-1\right)\left(n+1\right)\)
Vì n;n-1;n+1 là ba số nguyên liên tiếp
nên \(n\left(n-1\right)\left(n+1\right)⋮3!\)
hay \(n\left(n-1\right)\left(n+1\right)⋮6\)