chứng minh đẳng thức:
(a^2+b^2+c^2-ab-bc-ca).(a+b+c)=a(a^2-bc)+b(b^2-ca)+c(c^2-ab)
chứng minh các bất đẳng thức sau:
a)\(\left(\dfrac{a+b}{2}\right)^2>=ab\) với mọi a,b
b)\(a^2+b^2+c^2>ab+bc+ca\)
a, \(\dfrac{a^2+2ab+b^2}{4}\ge ab\)
\(\Leftrightarrow\)a^2+2ab+b^2>=4ab
\(\Leftrightarrow\)a^2-2ab+b^2>=0
\(\Leftrightarrow\)(a-b)^2>=0 (luôn đúng)
b,\(a^2+b^2+c^2\ge ab+bc+ca\)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)
\(a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+a^2\ge0\)
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) luôn đúng
Chứng minh bất đẳng thức ab/(a+b) + bc/(b+c) + ca/(c+a) >= 3/2
Cho thêm điều kiện đi bạn VD a+b+c=3
Cho a=b=c. Chứng minh các đẳng thức: a)a^4+b^4+c^4=2(a^2b^2+b^2c^2+c^2a^2)=2(ab+bc+ca)^2=(a^2+b^2+c^2)^2/2
Ta có a+b+c=0=>a2+b2+c2+2ab+2bc+2ca=0
=>a2+b2+c2=-2(ab+bc+ca)=>(a2+b2+c2)2=(-2ab-2bc-2ca)2
=>a4+b4+c4+2a2b2+2b2c2+2c2a2=4a2b2+4b2c2+4c2a2+4abc(a+b+c)=4a2b2+4b2c2+4c2a2(Do a+b+c=0)
=>a4+b4+c4= 2(a2b2+b2c2+c2a2)
chứng minh bất đẳng thức sau
\(\dfrac{a}{bc}\)+\(\dfrac{b}{ca}\)+\(\dfrac{c}{ab}\)≥\(\dfrac{2}{a}\)+\(\dfrac{2}{b}\)+\(\dfrac{2}{c}\)( với a,b,c là các số dương)
Chứng minh bất đẳng thức:
a^2+b^2+c^2 ≥ ab+bc+ca.
Ta có: (a-b)^2 ≥ 0
(=). a^2+b^2≥2ab
Tương tự: b^2+c^2 ≥ 2bc
c^2+a^2 ≥ 2ca
Suy ra 2×(a^2+b^2+c^2) ≥ 2×(ab+BC+ca)
(=) a^2+b^2+c^2 ≥ ab+bc+ca
Dấu bằng xảy ra khi: a=b=c
\(a^2+b^2\ge2\sqrt{a^2b^2}\ge2ab\)
\(b^2+c^2\ge2\sqrt{b^2c^2}\ge2bc\)
\(c^2+a^2\ge2\sqrt{c^2a^2}\ge2ca\)
\(\Rightarrow a^2+b^2+c^2\ge ab+bc+ca\)
Chứng minh đẳng thức
a, ( x + a) ( x + b ) = x^2 + ( a + b )x + ab
b, (a + b + c) ( a^2 + b^2 + c^2 - ab - bc - ca ) = a^3 + b^3 + c^3 = 3ab
Chứng minh bất đẳng thức :
\(a^2+b^2+c^2\ge ab+bc+ca\) với mọi a,b,c
Ta có:
\(a^2+b^2\ge2ab\)
\(b^2+c^2\ge2bc\)
\(c^2+a^2\ge2ca\)
Cộng vế với vế 3 bất đẳng thức trên ta có:
\(2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)
\(=>a^2+b^2+c^2\ge ab+bc+ca\)
Dấu \("="\) xảy ra khi \(a=b=c\)
CHÚC BẠN HỌC TỐT........
ta có : \(\left(a-b-c\right)^2\ge0\forall a;b;c\)
\(\Leftrightarrow a^2+b^2+c^2-2ab-2bc-2ca\ge0\forall a;b;c\)
\(\Leftrightarrow a^2+b^2+c^2\ge2ab+2bc+2ca\forall a;b;c\)
\(\Leftrightarrow a^2+b^2+c^2\ge2\left(ab+bc+ca\right)\forall a;b;c\)
\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\forall a;b;c\)
vậy \(a^2+b^2+c^2\ge ab+bc+ca\) với mọi \(a;b;c\) (đpcm)
1.(a+b+c)(a^2+b^2+c^2-ab-bc-ca)= a^3-b^3+c^3-3abc
2. (3a+2b-1)(a+5)-2b(a-2)=(3a+5)(a+3)+2(7b-10)
chứng minh các đẳng thức
1) a³ + b³ + c³ - 3abc
=(a + b)(a² - ab + b²) + c³ - 3abc
=(a + b)(a² - ab + b²) + c(a² - ab + b²) - 2abc - ca² - cb²
=(a + b + c)(a² - ab + b²) - (abc + b²c + bc² + ac² + abc + c²a) + c³ + ac² + bc²
=(a + b = c)(a² - ab + b²) - (a + b + c)(bc + ca) + c²(a + b + c)
=(a + b + c)(a² + b² + c² - ab - bc - ca)
2) \(\left(3a+2b-1\right)\left(a+5\right)-2b\left(a-2\right)=\left(3a+5\right)\left(a-3\right)+2\left(7b-10\right)\left(1\right)\)
\(\Leftrightarrow3a^2+15a+2ab+10b-a-5-2ab+4b=3a^2+14a+15+14b-10\)
\(\Leftrightarrow3a^2+14a+14b-5=3a^2+14a+14b-5\)( đúng)
\(\Rightarrow\left(1\right)\) đúng (đpcm)
1) \(a^3+b^3+c^3-3abc=\left(a+b\right)^3+c^3-3a^2b-3ab^2-3abc\)
\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b\right)-3abc\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-ac-bc\right)-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-ac-bc-3ab\right)\)
\(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\left(đpcm\right)\)
Chứng minh đẳng thức
a, ( x + a ) ( x + b ) = x^2 + ( a + b )x + ab
b, ( a + b + c) ( a^2 + b^2 + c^2 - ab - bc - ca ) = a^3 + b^3 + c^3 = 3ab
a) (x+a).(x+b)=x2+bx+ax+ab=x2+(a+b)x+ab
b)(a+b+c)(a2+b2+c2-ab-bc-ca)
=a3+ab2+ac2-a2b-abc-a2c+a2b+b3+bc2-ab2-b2c-ac2+a2c+b2c+c3-abc-bc2-ac2
=a3+b3+c3-3ab