Những câu hỏi liên quan
Hoàng Ngọc Tuyết Nung
Xem chi tiết
Big City Boy
Xem chi tiết
vn jat
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 3 2021 lúc 0:12

\(\dfrac{1}{a^2+a+1}\ge\dfrac{1}{a^2+\dfrac{a^2+1}{2}+1}=\dfrac{2}{3}.\dfrac{1}{a^2+1}=\dfrac{2}{3}\left(1-\dfrac{a^2}{a^2+1}\right)\ge\dfrac{2}{3}\left(1-\dfrac{a}{2}\right)\)

Tương tự và cộng lại: \(VT\ge\dfrac{2}{3}\left(3-\dfrac{a+b+c}{2}\right)=\dfrac{2}{3}.\dfrac{3}{2}=1\)

Dấu "=" xảy ra khi \(a=b=c=1\)

Bình luận (0)
Big City Boy
Xem chi tiết
✿✿❑ĐạT̐®ŋɢย❐✿✿
10 tháng 3 2021 lúc 13:01

Ta có : \(a^2+b^2\ge2ab\Rightarrow a^2+b^2-ab\ge ab\)

\(\Rightarrow\dfrac{1}{a^2-ab+b^2}\le\dfrac{1}{ab}=\dfrac{abc}{ab}=c\) ( do $abc=1$ )

Tương tự ta có :

\(\dfrac{1}{b^2-bc+c^2}\le a\)

\(\dfrac{1}{c^2-ab+a^2}\le b\)

Cộng vế với vế các BĐT trên có :

\(\dfrac{1}{a^2-ab+b^2}+\dfrac{1}{b^2-bc+c^2}+\dfrac{1}{c^2-ac+a^2}\le a+b+c\)

Dấu "=" xảy ra khi $a=b=c$

Bình luận (0)
Nguyễn Việt Lâm
10 tháng 3 2021 lúc 13:01

\(VT=\dfrac{1}{a^2+b^2-ab}+\dfrac{1}{b^2+c^2-bc}+\dfrac{1}{c^2+a^2-ca}\)

\(VT\le\dfrac{1}{2ab-ab}+\dfrac{1}{2bc-bc}+\dfrac{1}{2ca-ca}=\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}=\dfrac{a+b+c}{abc}=a+b+c\)

Dấu "=" xảy ra khi \(a=b=c=1\)

Bình luận (0)
dinh huong
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 9 2021 lúc 15:15

\(\dfrac{a^3}{1+b}+\dfrac{1+b}{4}+\dfrac{1}{2}\ge3\sqrt[3]{\dfrac{a^3\left(1+b\right)}{8\left(a+b\right)}}=\dfrac{3a}{2}\)

\(\dfrac{b^3}{1+c}+\dfrac{1+c}{4}+\dfrac{1}{2}\ge\dfrac{3b}{2}\) ; \(\dfrac{c^3}{1+a}+\dfrac{1+a}{4}+\dfrac{1}{2}\ge\dfrac{3c}{2}\)

\(\Rightarrow VT+\dfrac{a+b+c}{4}+\dfrac{9}{4}\ge\dfrac{3}{2}\left(a+b+c\right)\)

\(\Rightarrow VT\ge\dfrac{5}{4}\left(a+b+c\right)-\dfrac{9}{4}\ge\dfrac{5}{4}.3\sqrt[3]{abc}-\dfrac{9}{4}=\dfrac{3}{2}\)

Bình luận (0)
Lê Thế Tài
Xem chi tiết
katherina
25 tháng 8 2017 lúc 10:11

\(a^2+b^2+c^2=\dfrac{5}{3}< 2\)

\(a^2+b^2+c^2\ge2bc+2ac-2ab\)

Do đó : \(2bc+2ac-2ab< 2\)

Chia cả hai vế cho 2abc ta được

\(\dfrac{1}{a}+\dfrac{1}{b}-\dfrac{1}{c}< \dfrac{1}{abc}\) (đpcm)

Bình luận (0)
Neet
Xem chi tiết
Lightning Farron
6 tháng 4 2017 lúc 8:57

Bài 1:

Dự đoán dấu "=" xảy ra khi \(a=b=c=1\) ta tính được giá trị là \(9\)

Ta sẽ chứng minh nó là GTLN

Thật vậy ta cần chứng minh

\(\Sigma\dfrac{11a+4b}{4a^2-ab+2b^2}\le\dfrac{3\left(ab+ac+bc\right)}{abc}\)

\(\LeftrightarrowΣ\left(\dfrac{3}{a}-\dfrac{11a+4b}{4a^2-ab+2b^2}\right)\ge0\)

\(\LeftrightarrowΣ\dfrac{\left(a-b\right)\left(a-6b\right)}{a\left(4a^2-ab+2b^2\right)}\ge0\)

\(\LeftrightarrowΣ\left(\dfrac{\left(a-b\right)\left(a-6b\right)}{a\left(4a^2-ab+2b^2\right)}+\dfrac{1}{b}-\dfrac{1}{a}\right)\ge0\)

\(\LeftrightarrowΣ\dfrac{\left(a-b\right)^2\left(a+b\right)}{ab\left(4a^2-ab+2b^2\right)}\ge0\) (luôn đúng)

Bài 2:

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\left(a^5+b^2+c^2\right)\left(\dfrac{1}{a}+b^2+c^2\right)\ge\left(a^2+b^2+c^2\right)^2\)

\(\Rightarrow\dfrac{1}{a^5+b^2+c^2}\le\dfrac{\dfrac{1}{a}+b^2+c^2}{\left(a^2+b^2+c^2\right)^2}\)

Tương tự rồi cộng theo vế ta có:

\(Σ\dfrac{1}{a^5+b^2+c^2}\le\dfrac{Σ\dfrac{1}{a}+2Σa^2}{\left(a^2+b^2+c^2\right)^2}\)

Ta chứng minh \(Σ\dfrac{1}{a}+2\left(a^2+b^2+c^2\right)\le3\left(a^2+b^2+c^2\right)\)

\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\) - BĐT cuối đúng

Vậy ta có ĐPCM. Dấu "=" xảy ra khi \(a=b=c=1\)

Bài 3:

Từ \(a+b+c=3abc\Rightarrow\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}=3\)

Đặt \(\left(\dfrac{1}{a};\dfrac{1}{b};\dfrac{1}{c}\right)\rightarrow\left(x;y;z\right)\)\(\Rightarrow xy+yz+xz=3\) và BĐT cần chứng minh là

\(x^3+y^3+z^3\ge3\). Áp dụng BĐT AM-GM ta có:

\(x^3+x^3+1\ge3\sqrt[3]{x^3\cdot x^3\cdot1}=3x^2\)

Tương tự có: \(y^3+y^3+1\ge3y^2;z^3+z^3+1\ge3z^2\)

Cộng theo vế 3 BĐT trên ta có:

\(2\left(x^3+y^3+z^3\right)+3\ge3\left(x^2+y^2+z^2\right)\)

Lại có BĐT quen thuộc \(x^2+y^2+z^2\ge xy+yz+xz\)

\(\Rightarrow3\left(x^2+y^2+z^2\right)\ge3\left(xy+yz+xz\right)=9\left(xy+yz+xz=3\right)\)

\(\Rightarrow2\left(x^3+y^3+z^3\right)+3\ge9\Rightarrow2\left(x^3+y^3+z^3\right)\ge6\)

\(\Rightarrow x^3+y^3+z^3\ge3\). BĐT cuối đúng nên ta có ĐPCM

Đẳng thức xảy ra khi \(a=b=c=1\)

T/b:Vâng, rất giỏi :GT8:

Bình luận (28)
Lightning Farron
4 tháng 4 2017 lúc 20:35

lần sau đăng từng câu 1 dc ko bn :)

Bình luận (2)
Neet
6 tháng 4 2017 lúc 16:24

system errow

Bình luận (0)
Lê Thế Tài
Xem chi tiết
๖Fly༉Donutღღ
25 tháng 8 2017 lúc 10:17

Với mọi a , b , c \(\in\)R ta luôn có :

\(a^2\)+   \(b^2\)+   \(c^2\)> hoặc = \(2bc+2ca-2ab\left(1\right)\)

Ta cần chứng minh ( 1 ) là bất đẳng thức đúng

\(\Leftrightarrow\)\(a^2\)+   \(b^2\)+   \(c^2\)+ 2ab - 2bc - 2ca > hoặc = 0

\(\Leftrightarrow\)\(\left(a+b-c\right)^2\) > hoặc = 0 ( 2 )

Bất đẳng thức ( 2 ) luôn đúng với mọi a ; b ; c mà các phép biến đổi trên tương ứng

Nên bất đẳng thức ( 1 ) được chứng minh

Xảy ra khi và chỉ khi a + b = c

Mà   \(a^2\)+   \(b^2\)+   \(c^2\)=   \(\frac{5}{3}\)( gt )

Mà   \(\frac{5}{3}\)=   \(1\frac{2}{3}\)< 2  ( 3 )

Từ ( 1 ) kết hợp với ( 3 ) ta có thể viết :

2bc + 2ca - 2ab < hoặc =    \(a^2\)+   \(b^2\)+   \(c^2\)< 2

\(\Rightarrow\)2bc + 2ca - 2ab < 2

Vì a ; b ; c > 0 nên chia cả 2 vế của bđt cho 2abc

\(\frac{2bc+2ca-2ab}{2abc}< \frac{2}{2abc}\)

\(\Leftrightarrow\)\(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}< \frac{1}{abc}\)

Vậy với a ; b ; c là các số dương thỏa mãn điều kiện :   \(a^2\)+   \(b^2\)+   \(c^2\)=   \(\frac{5}{3}\)thì ta luôn chứng minh được :

\(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}< \frac{1}{abc}\)

Bình luận (0)
๖Fly༉Donutღღ
25 tháng 8 2017 lúc 10:20

đm làm mỏi tay :v thấy đúng thì ..................
 

Bình luận (0)
Trần Minh Tâm
Xem chi tiết
Trần Minh Tâm
22 tháng 10 2017 lúc 12:44

Ta đi chứng minh BĐT : \(a^2+b^2+c^2\ge2\left(bc+ac-ab\right)\)

\(\Leftrightarrow\) \(a^2+b^2+c^2+2ab-2bc-2ac\ge0\)

\(\Leftrightarrow\) \(\left(a+b-c\right)^2\ge0\) luôn đúng.

\(\Rightarrow2\left(bc+ac-ab\right)\le\dfrac{5}{3}\)

\(\Leftrightarrow bc+ac-ab\le\dfrac{5}{6}< 1\)

\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}-\dfrac{1}{c}< \dfrac{1}{abc}\)

Bình luận (0)