1. Rút gọn
a) (a+b+c)2-(a+b)2-c2
b) (a+b+c)2-(b+c)2-2a(b+c)
c) (3a+1)2-2(2a+5).(3a+1)+(2a+5)2
Rút gọn các biểu thức sau:
a) M = ( 2 a + b ) 2 – ( b – 2 a ) 2 ;
b) N = ( 3 a + 2 ) 2 + 2 ( 2 + 3 a ) ( 1 – 2 b ) + ( 2 b - 1 ) 2 .
a) M = 8ab;
b) N = [ ( 3 a + + 2 ) + ( 1 – 2 b ) ] 2 = ( 3 a – 2 b + 3 ) 2 .
1. Rút gọn các biểu thức sau:
M = (2a+b)2-(b-2a)2
N = (3a+2)2+2a(1-2b)+(2b-1)2
A = (m-n)2+4mn
2. Tính:
a) (x+5)2 b) (5/2-t)2
c) (2u+3v)2 d) (-1/8 a+2/3 bc)2
e) (x/y-1/z)2 f) (mn/4-x/6)(mn/4+x/6)
Bài 2:
a) \(\left(x+5\right)^2=x^2+10x+25\)
b) \(\left(\dfrac{5}{2}-t\right)^2=\dfrac{25}{4}-5t+t^2\)
c) \(\left(2u+3v\right)^2=4u^2+12uv+9v^2\)
d) \(\left(-\dfrac{1}{8}a+\dfrac{2}{3}bc\right)^2=\dfrac{1}{64}a^2-\dfrac{1}{6}abc+\dfrac{4}{9}b^2c^2\)
e) \(\left(\dfrac{x}{y}-\dfrac{1}{z}\right)^2=\dfrac{x^2}{y^2}-\dfrac{2x}{yz}+\dfrac{1}{z^2}\)
f) \(\left(\dfrac{mn}{4}-\dfrac{x}{6}\right)\left(\dfrac{mn}{4}+\dfrac{x}{6}\right)=\dfrac{m^2n^2}{16}-\dfrac{x^2}{36}\)
Bài 1:
$M=(2a+b)^2-(b-2a)^2=[(2a+b)-(b-2a)][(2a+b)+(b-2a)]$
$=4a.2b=8ab$
$N=(3a+1)^2+2a(1-2b)+(2b-1)^2$
$=(9a^2+6a+1)+2a-4ab+(4b^2-4b+1)$
$=9a^2+8a+4b^2-4b-4ab+2$
$A=(m-n)^2+4mn=m^2-2mn+n^2+4mn$
$=m^2+2mn+n^2=(m+n)^2$
Bài 1:
a: Ta có: \(M=\left(2a+b\right)^2-\left(b-2a\right)^2\)
\(=4a^2+4ab+b^2-b^2+4ab-4a^2\)
\(=8ab\)
b: Ta có: \(N=\left(3a+2\right)^2+2a\left(1-2b\right)+\left(2b-1\right)^2\)
\(=\left(3a+2+1-2b\right)^2\)
\(=\left(3a-2b+3\right)^2\)
\(=9a^2+4b^2+9-12ab+18a-12b\)
c: Ta có: \(A=\left(m-n\right)^2+4nm\)
\(=m^2-2mn+n^2+4mn\)
\(=m^2+2mn+n^2\)
\(=\left(m+n\right)^2\)
2:
a: \(\left(x+5\right)^2=x^2+10x+25\)
b: \(\left(\dfrac{5}{2}-t\right)^2=\dfrac{25}{4}-5t+t^2\)
2/ RÚT GỌN BIỂU THỨC
a)3(2a –1)+ 5(3 –a)
b)25x –4 (3x –1)+ 7(5 –2x)
c)−12𝑥3–𝑥1–2𝑥−18𝑥2
d)(2a –b)(b + 4a) + 2a(b –3a)
e)(x +1)(1 + x –x2+ x3–x4)
f)3y2(2y –1)+ y –y(1 –y + y2) –y2+ y
(Giải ra chi tiết giùm mình nha)
a) \(=6a-3+15-5a=a+12\)
b) \(=25x-12x+4+35-14x=-x+39\)
d) \(=2ab+8a^2-b^2-4ab+2ab-6a^2=2a^2-b^2\)
e) \(=x+x^2-x^3+x^4-x^5+1+x-x^2+x^3-x^4=-x^5+2x+1\)
f) \(=6y^3-3y^2+y-y+y^2-y^3-y^2+y=5y^3-3y^2+y\)
a) 3( 2a -1) +5( 3-a)
= 3. 2a -3.1 +5. 3- 5.a
= 6a -3+ 15-5a
=(6a -5a )+ (-3+ 15)
b) 25x - 4(3x - 1) +7(5 - 2x)
= 25x -4.3x + 4.1 + 7.5 - 7.2
=25x - 12x + 4 +35 - 14x
= (25x-12x-14x)+(4+35)
= -x=39
c) -12x3 -x1-2x-18x2
= -36x-x-2x-36x
= -75x
d) (2a-b)(b+4a)+2a(b-3a)
= 2ab+2a4a-bb-b4a+2ab-2a3b
= 2ab+8a2-b2-4ab+2ab-6a2
=(2ab-4ab+2ab)+(8a2-6a2)-b2
= 2a2-b2
e) (x+1)(2+x-x2+x3-x4)
= (x+1)(2-2x)
= x2-x2x+1.2-1.2x
=(2x-2x)-2x2+2
= -2x2+2
Cho a, b,c : abc = 1. Chứng minh:
\(\dfrac{a^2b^2}{2a^2+b^2+3a^2b^2}+\dfrac{b^2c^2}{2b^2+c^2+3b^2c^2}+\dfrac{c^2a^2}{2c^2+a^2+3a^2c^2}\le\dfrac{1}{2}\)
\(\dfrac{a^2b^2}{2a^2+b^2+3a^2b^2}=\dfrac{a^2b^2}{\left(a^2+b^2\right)+\left(a^2+a^2b^2\right)+2a^2b^2}\le\dfrac{a^2b^2}{2ab+2a^2b+2a^2b^2}=\dfrac{ab}{2\left(1+a+ab\right)}\)
Tương tự và cộng lại;
\(P\le\dfrac{1}{2}\left(\dfrac{ab}{1+a+ab}+\dfrac{bc}{1+b+bc}+\dfrac{ca}{1+c+ca}\right)\)
\(P\le\dfrac{1}{2}\left(\dfrac{ab}{1+a+ab}+\dfrac{abc}{a+ab+abc}+\dfrac{ab.ca}{ab+abc+ab.ca}\right)\)
\(P\le\dfrac{1}{2}\left(\dfrac{ab}{1+a+ab}+\dfrac{1}{a+ab+1}+\dfrac{a}{ab+1+a}\right)=\dfrac{1}{2}\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Rút gọn các biểu thức sau:
\(A=\dfrac{a^2-1}{3}\sqrt{\dfrac{9}{\left(1-a\right)^2}}\) với a < 1
\(B=\sqrt{\left(3a-5\right)^2}-2a+4\) với a < \(\dfrac{1}{2}\)
\(C=4a-3-\sqrt{\left(2a-1\right)^2}\) với a < 2
\(D=\dfrac{a-2}{4}\sqrt{\dfrac{16a^4}{\left(a-2\right)^2}}\) với a < 2
a) Ta có: \(A=\dfrac{a^2-1}{3}\cdot\sqrt{\dfrac{9}{\left(1-a\right)^2}}\)
\(=\dfrac{\left(a+1\right)\cdot\left(a-1\right)}{3}\cdot\dfrac{3}{\left|1-a\right|}\)
\(=\dfrac{\left(a+1\right)\left(a-1\right)}{1-a}\)
=-a-1
b) Ta có: \(B=\sqrt{\left(3a-5\right)^2}-2a+4\)
\(=\left|3a-5\right|-2a+4\)
\(=5-3a-2a+4\)
=9-5a
c) Ta có: \(C=4a-3-\sqrt{\left(2a-1\right)^2}\)
\(=4a-3-\left|2a-1\right|\)
\(=4a-3-2a+1\)
\(=2a-2\)
d) Ta có: \(D=\dfrac{a-2}{4}\cdot\sqrt{\dfrac{16a^4}{\left(a-2\right)^2}}\)
\(=\dfrac{a-2}{4}\cdot\dfrac{4a^2}{\left|a-2\right|}\)
\(=\dfrac{a^2\left(a-2\right)}{-\left(a-2\right)}\)
\(=-a^2\)
rút gọn theo quy tắc đấu ngoặc
A =(a+b-2c) -(-a+b+c) -(2a-b-c)
B=-(2a-b+c) + (b-2c-3a) -(-5a-3c+b)
C=(3a-b-2c)-( 2b+3c-a) +(2a-3b)
D=(5a-3b+c) +( 2a-3b+5) -( b-c+a)
A =(a+b-2c) -(-a+b+c) -(2a-b-c)
= a+b-2c+a-b-c-2a+b+c
= b-2c
B=-(2a-b+c) + (b-2c-3a) -(-5a-3c+b)
= -2a+b-c+b-2c-3a+5a+3c-b
= b-c
C=(3a-b-2c)-( 2b+3c-a) +(2a-3b)
= a-b-2c-2b-3c+a+2a-3b
= -6b-5c
D=(5a-3b+c) +( 2a-3b+5) -( b-c+a)
= 5a-3b+c+2a-3b+5-b+c-a
= 6a-7b+2c
\(A=\left(a+b-2c\right)-\left(-a+b+c\right)-\left(2a-b-c\right)\)
\(=a+b-2c+a-b-c-2a+b+c=b-2c\)
\(B=-\left(2a-b+c\right)+\left(b-2c-3a\right)-\left(-5a-3c+b\right)\)
\(=-2a+b-c+b-2c-3a+5a+3c-b=b\)
\(C=\left(3a-b-2c\right)-\left(2b+3c-a\right)+\left(2a-3b\right)\)
\(=3a-b-2c-2b-3c+a+2a-3b=6a-6b-5c\)
\(D=\left(5a-3b+c\right)+\left(2a-3b+5\right)-\left(b-c+a\right)\)
\(=5a-3b+c+2a-3b+5-b+c-a=6a-7b+2c\)
Gíup mình nhé, mình cảm ơn nhiều
1, Khai triển các đẳng thức sau
a/ (2a+3b)2 ; b/ (3a+5) (5-3a) ; c/ (x2-3y)2
2, Chứng minh rằng
a/ (2a+3)2+(3a-2)2=13(a2+1)
b/ (2a+3b)2-(2a-3b)2=24ab
c/ (1-2a) (1+2a) (1+4a2)=1-16a4
a/ (2a+3b)^2 = (2a)^2+2.2a.3b+(3b)^2 = 4a^2+12ab+9b^2
b/ ta nhân đa thức với đa thức thì kết quả sẽ = -9a^2+25
c/ (x^2-3y)^2= (x^2)^2-2.x^2.3y+(3y)^2= x^4-6x^2y+9y^2
Rút gọn:
a) A=(4-5x)2-(3+5x)2
b) B=(3x-1)(1+3x)-(3x+1)2
c) C=(2x+5)3-(2x-5)3-(120x2+49)
d) D=(2a-b+2)3-6(2a-b+2)2+12(2a-b+2)-8-(2a-b)3
a) A=(4-5x)2-(3+5x)2=(4-5x-3-5x)(4-5x+3+5x)=(-25x+1)1=-25x+1
B=(3x-1)(1+3x)-(3x+1)2=9x2-1-(3x+1)2=9x2-1-(9x2+6x+1)=9x2-1-9x2-6x-1=-6x-2=-2(3x+1)
Với giá trị nào của a để các b.thức sau có giá trị = 2:
a) \(\dfrac{3a-1}{3a+1}\) + \(\dfrac{a-3}{a+3}\)
b) \(\dfrac{2a-9}{2a-5}\) + \(\dfrac{3a}{3a-2}\)
c) \(\dfrac{10}{3}\) - \(\dfrac{3a-1}{4a+12}\) - \(\dfrac{7a+2}{6a+18}\)