giải pt
\(\left|x^2-x+2\right|-3x-7=0\)
Bằng cách phân tích vế trái thành nhân tử, giải các PT sau:
d) \(x\left(2x-7\right)-4x+14=0\)
e) \(\left(2x-5\right)^2-\left(x+2\right)^2=0\)
f) \(x^2-x-\left(3x-3\right)=0\)
d) \(PT\Leftrightarrow x\left(2x-7\right)-4\left(x-7\right)=0\)
\(\Leftrightarrow\left(2x-7\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-7=0\\x-4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=4\end{matrix}\right.\)
Vậy: \(S=\left\{\dfrac{7}{2};4\right\}\)
e) \(PT\Leftrightarrow\left(2x-5-x-2\right)\left(2x-5+x+2\right)=0\)
\(\Leftrightarrow\left(x-7\right)\left(3x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-7=0\\3x-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=7\\x=1\end{matrix}\right.\)
Vậy: \(S=\left\{7;1\right\}\)
f) \(PT\Leftrightarrow x\left(x-1\right)-3\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
Vậy: \(S=\left\{1;3\right\}\)
\(d,x\left(2x-7\right)-4x+14=0\)
\(x\left(2x-7\right)-2\left(2x-7\right)=0\)
\(\left(x-2\right)\left(2x-7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{7}{2}\end{matrix}\right.\)
d: =>(2x-7)(x-2)=0
=>x=7/2 hoặc x=2
e: =>(2x-5-x-2)(2x-5+x+2)=0
=>(x-7)(3x-3)=0
=>x=7 hoặc x=1
f: =>x(x-1)-3(x-1)=0
=>(x-1)(x-3)=0
=>x=1 hoặc x=3
Cho \(f\left(x\right)=\left(x-2\right)\left(\sqrt{3x^2+1}\right)\). giải pt f(x)' \(^2\) =0?
Đề là \(f''\left(x\right)=0\) hay \(\left[f'\left(x\right)\right]^2=0\) nhỉ?
\(f'\left(x\right)=\sqrt{3x^2+1}+\dfrac{3x\left(x-2\right)}{\sqrt{3x^2+1}}=\dfrac{6x^2-6x+1}{\sqrt{3x^2+1}}\)
\(\left[f'\left(x\right)\right]^2=0\Leftrightarrow f'\left(x\right)=0\Leftrightarrow6x^2-6x+1=0\)
\(\Rightarrow x=\dfrac{3\pm\sqrt{3}}{6}\)
Giải pt sau :
\(\left(3x-2\right)\left[\frac{2\left(x+3\right)}{7}-\frac{4x-3}{5}\right]=0\)
\(\left(3x-2\right)\left[\frac{2\left(x+3\right)}{7}-\frac{4x-3}{5}\right]=0\)
\(\left(3x-2\right).\frac{10\left(x+3\right)-7\left(4x-3\right)}{35}=0\)
\(\left(3x-2\right)\left(10x+30-28x+21\right)=0\)
\(\left(3x-2\right)\left(51-18x\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}3x-2=0\\51-18x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}3x=2\\-18x=-51\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{2}{3}\\x=\frac{17}{6}\end{cases}}}\)
Vậy \(S=\left\{\frac{2}{3};\frac{17}{6}\right\}\)
\(\left(3x-2\right)\left[\frac{2\left(x+3\right)}{7}-\frac{4x-3}{5}\right]=0\)
\(\Leftrightarrow\left(3x-2\right)\left[\frac{2.5\left(x+3\right)}{35}-\frac{7\left(4x-3\right)}{35}\right]=0\)
\(\Leftrightarrow\left(3x-2\right)\left(\frac{10x+30-28x+21}{35}\right)=0\)
\(\Leftrightarrow\left(3x-2\right)\left(\frac{-18x+51}{35}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x-2=0\\\frac{-18x+51}{35}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}3x=2\\-18x+51=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{2}{3}\\x=\frac{17}{6}\end{cases}}}\)
Vậy \(x=\left\{\frac{2}{3};\frac{17}{6}\right\}\)
Giải PT: \(x\left(x+2\right)\left(x^3+3x^2+3x+1\right)+1=0\)
Bằng cách phân tích vế trái thành nhân tử, giải các PT sau:
a) \(2x.\left(x-3\right)+5\left(x-3\right)\)
b) \(\left(x^2-4\right)+\left(x-2\right).\left(3-2x\right)=0\)
c) \(x^3-3x^2+3x-1=0\)
a: =(x-3)(2x+5)
b: \(\Leftrightarrow\left(x-2\right)\left(x+2+3-2x\right)=0\)
=>(x-2)(5-x)=0
=>x=2 hoặc x=5
c: =>x-1=0
hay x=1
Giải PT: \(x\left(x+2\right)\left(x^3+3x^2+3x+1\right)+1=0\)
giải pt :
a, \(\sqrt[3]{2-x}=1-\sqrt{x-1}\)
b, \(2\sqrt[3]{3x-2}+3\sqrt{6-5x}-8=0\)
c, \(\left(x+3\right)\sqrt{-x^2-8x+48}=x-24\)
d, \(\sqrt[3]{\left(2-x\right)^2}+\sqrt[3]{\left(7+x\right)\left(2-x\right)}=3\)
e, \(\dfrac{\sqrt[3]{7-x}-\sqrt[3]{x-5}}{\sqrt[3]{7-x}+\sqrt[3]{x-5}}=6-x\)
1) Cho pt \(3x^2+5x-6=0\) có 2 nghiệm \(x_1,x_2\) (không giải pt)
Tính giá trị biểu thức \(A=\left(x_1-2x_2\right)\left(2x_1-x_2\right)\)
2) Cho pt \(3x^2-5x-3=0\) có nghiệm \(x_1,x_2\) ( không giải pt)
Tính giá trị biểu thức \(B=x^3_1.x_2+x_1.x^3_2\)
1, Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=-5\\x_1x_2=-6\end{matrix}\right.\)
\(A=\left(x_1-2x_2\right)\left(2x_1-x_2\right)\\ =2x_1^2-4x_1x_2-x_1x_2+2x_1^2\\ =2\left(x_1^2+x_2^2\right)-5x_1x_2\\ =2\left[\left(x_1+x_2\right)^2-2x_1x_2\right]-5x_1x_2\\ =2\left(-5\right)^2-4.\left(-6\right)-5.\left(-6\right)\\ =104\)
2, Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=5\\x_1x_2=-3\end{matrix}\right.\)
\(B=x_1^3x_2+x_1x_2^3\\ =x_1x_2\left(x_1^2+x_2^2\right)\\ =\left(-3\right)\left[\left(x_1+x_2\right)^2-2x_1x_2\right]\\ =\left(-3\right)\left[5^2-2\left(-3\right)\right]\\ =-93\)
giải pt: \(\left(3x-y\right)^3-3xy\left(x+y\right)+2=0\) biết \(x^2+y^2+xy=3\)