tim x de bieu thuc sau co nghia
\(\dfrac{1}{\sqrt{2x-x^2}}\)
A=\(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{2x-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
Tim cac gia tri cua x de A co nghia
Rut gon bieu thuc A
A có nghĩa \(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}\ne0\\\sqrt{x}-1\ne0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\\sqrt{x}\ne1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\x\ne1\end{matrix}\right.\)
Ta có:
A = \(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{2x-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
= \(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{\sqrt{x}\left(2\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
= \(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{2\sqrt{x}-1}{\sqrt{x}-1}\)
= \(\dfrac{-\sqrt{x}+1}{\sqrt{x}-1}=\dfrac{-\left(\sqrt{x}-1\right)}{\sqrt{x}-1}=-1\)
Kết luận: ...
ĐK của nó còn là: x ≥ 0 nữa dung doan nhé, mình viết thiếu...
giai dum minh bai nay voi :c=x/2x-2+x^2+1/2-2x^2
a)tim x de a co nghia
b)rut gon bieu thuc c
c)tim gia tri cua x de bieu thuc kia =1/2
giúp mình cảm ơn nhìu nha !
cho bieu thuc A = \(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}+1\right):\left(\frac{x+\sqrt{x}}{\sqrt{x}+1}\right)\)
a. tim x de bieu thuc A co nghia ?rut gon A ?
b. tinh gia tri cua bieu thuc A tai x=7+4√3
a. A có nghĩa khi \(\left\{{}\begin{matrix}x\ge0\\\sqrt{x}-1\ne\\\frac{x+\sqrt{x}}{\sqrt{x}+1}\ne0\end{matrix}\right.0\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
A\(=\frac{x-\sqrt{x}+\sqrt{x}-1}{\sqrt{x}-1}.\frac{\sqrt{x}+1}{x+\sqrt{x}}\)\(=\frac{x-1}{\sqrt{x}-1}.\frac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}.\frac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}+1}{\sqrt{x}}\)
b. \(x=7+4\sqrt{3}\Rightarrow\)A = \(\frac{\sqrt{7+4\sqrt{3}}+1}{\sqrt{7+4\sqrt{3}}}=\frac{\sqrt{\left(2+\sqrt{3}\right)^2}+1}{\sqrt{\left(2+\sqrt{3}\right)^2}}=\frac{3+\sqrt{3}}{2+\sqrt{3}}\)
cho bieu thuc A =\(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}+1\right):\left(\frac{x+\sqrt{x}}{\sqrt{x}+1}\right)\)
(x≥0;x≠1)
a. tim x de bieu thuc A co nghia ?rut gon A ?
b. tinh gia tri bieu thuc A tai x=7+4√3
a/ Ta có: A=\(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}+1\right):\left(\frac{x+\sqrt{x}}{\sqrt{x}+1}\right)=\left(\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}+1\right):\left(\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\right)\)
\(=\left(\sqrt{x}+1\right):\left(\sqrt{x}\right)=\frac{\sqrt{x}+1}{\sqrt{x}}\)
b/ Ta có :\(x=7+4\sqrt{3}=3+4\sqrt{3}+4=\left(\sqrt{3}+2\right)^2
\)
\(\Rightarrow\sqrt{x}=|\sqrt{3}+2|=\sqrt{3}+2\)
Thay x vào A ta có:
A\(=\frac{\sqrt{x}+1}{\sqrt{x}}=\frac{\sqrt{3}+2+1}{\sqrt{3}+2}=\frac{\sqrt{3}+3}{\sqrt{3}+2}=\frac{\left(\sqrt{3}+3\right)\left(2-\sqrt{3}\right)}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}=\frac{3-\sqrt{3}}{1}=3-\sqrt{3}\)
1,tim x de bieu thuc sau co nghia \(\sqrt{x+\dfrac{3}{x}}+\sqrt{-3x}\)
b,\(\sqrt{x^2+4x+5}\)
c,\(\sqrt{2x^2+4x+5}\)
2, phan tich thanh nhan tu
a,\(x+5\sqrt{x}+6\) b,\(x+4\sqrt{x}+3\)
GIUP MINH VS MINH CAN GAP MINH CAM ON TRUOC NHA
\(1a.\) Để : \(\sqrt{x+\dfrac{3}{x}}+\sqrt{-3x}\) xác định thì :
\(x+\dfrac{3}{x}\) ≥ 0 và \(-3x\) ≥ 0
⇔ \(\dfrac{x^2+3}{x}\) ≥ 0 và : x ≤ 0 ⇔ x > 0 và : x ≤ 0 ( Vô lý )
⇔ x ∈ ∅
b. Để : \(\sqrt{x^2+4x+5}\) xác định thì :
\(x^2+4x+5\) ≥ 0
Mà : \(x^2+4x+5=\left(x+2\right)^2+1>0\)
Vậy , ........
c. Để : \(\sqrt{2x^2+4x+5}\) xác định thì :
\(2x^2+4x+5\) ≥ 0
Mà : \(2\left(x^2+2x+1\right)+3=2\left(x+1\right)^2+3>0\)
Vậy ,.........
Bài 2. \(a.x+5\sqrt{x}+6=x+2.\dfrac{5}{2}\sqrt{x}+\dfrac{25}{4}+6-\dfrac{25}{4}=\left(\sqrt{x}+\dfrac{5}{2}\right)^2-\dfrac{1}{4}=\left(\sqrt{x}+\dfrac{5}{2}-\dfrac{1}{2}\right)\left(\sqrt{x}+\dfrac{5}{2}+\dfrac{1}{2}\right)=\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)\)
\(b.x+4\sqrt{x}+3=x+\sqrt{x}+3\sqrt{x}+3=\sqrt{x}\left(\sqrt{x}+1\right)+3\left(\sqrt{x}+1\right)=\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)\)
tim x thuoc N de bieu thuc sau co gia tri la so tu nhien: Q=\(\dfrac{\text{x}+1}{\text{x}-\sqrt{\text{x}}+1}\)
Ta có :
\(Q=\dfrac{x+1}{x-\sqrt[]{x}+1}\left(x\inℕ\right)\)
\(\Leftrightarrow Q=\dfrac{\left(x+1\right)\left(\sqrt[3]{x}+1\right)}{\left(\sqrt[3]{x}+1\right)\left(x-\sqrt[]{x}+1\right)}\)
\(\Leftrightarrow Q=\dfrac{\left(x+1\right)\left(\sqrt[3]{x}+1\right)}{\left(x+1\right)}\)
\(\Leftrightarrow Q=\sqrt[3]{x}+1\)
Để \(Q\inℕ\)
\(\Leftrightarrow\sqrt[3]{x}+1\inℕ\)
\(\Leftrightarrow\sqrt[3]{x}\inℕ\)
\(\Leftrightarrow x=\left\{x\inℕ|x=k^3;k\inℕ\right\}\)
Bai 1)Cho bieu thuc A=\(\frac{x+y-2\sqrt{xy}}{x-y}\)
a)Tim dieu kien de A co nghia
b)Rut gon A
c)Tinh A biet x=\(3+2\sqrt{2}\)va y=\(3-2\sqrt{2}\)
Bai 2) Cho bieu thuc B=\(\frac{x-3}{\sqrt{x-1}-\sqrt{2}}\)
a)Tim dieu kien de B co nghia
b)Rut gon B
c) Tinh B voi x=\(4\left(2-\sqrt{3}\right)\)
d)Tim x de B co gia tri nho nhat
a) A có nghĩa\(\Leftrightarrow x-y\ne0\Leftrightarrow x\ne y\)
b) \(A=\frac{x+y-2\sqrt{xy}}{x-y}=\frac{\left(\sqrt{x-\sqrt{y}}\right)^2}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}=\frac{\sqrt{x}-\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)
Tim x de cac bieu thuc sau co nghia :
1)\(\sqrt{\frac{5-2x}{x^2}}\)
2)\(\sqrt{4-x^2}\)
3)\(\sqrt{x^2-1}\)
4)\(\frac{1-x}{\sqrt{4x-3}}\)
5)\(\frac{\sqrt{1-2x}}{x^2-1}\)
6)\(\frac{3}{\sqrt{1-3x}}\)
1) có nghĩa ↔5-2x >=0 ↔x<=5 phần 2 2)có nghĩa ↔(2-x)(2+x)>=0↔x<=2 hoặc x>=-2 3) có nghĩa ↔(x-1)(x+1)>=0↔x>=1 hoặc x>=-1 4)có nghĩa ↔4-3x >0↔x<4 phần 3 5)có nghĩa ↔1-2x>=0 và x>=1 hoặc x>=-1↔1<=x<=1 phần 2 6) có nghĩa ↔1-3x>0↔x<1 phần 3
A=(\(\frac{1}{\sqrt{x}-1}\)+\(\frac{1}{\sqrt{x}+1}\))2.\(\frac{x^2-1}{2}\)-\(\sqrt{1-x^2}\)
1)tim dk cua x de bieu thuc A co nghia
2)rut gon bieu thuc A
3) giai phuong trinh theo x khi A=-2