Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hiền Trâm
Xem chi tiết
Trên con đường thành côn...
2 tháng 8 2021 lúc 21:52

undefined

Nguyễn Lê Phước Thịnh
2 tháng 8 2021 lúc 21:57

1) 

Ta có: x+y=2

nên \(\left(x+y\right)^2=4\)

\(\Leftrightarrow x^2+y^2+2xy=4\)

\(\Leftrightarrow2xy=2\)

hay xy=1

Ta có: \(x^3+y^3\)

\(=\left(x+y\right)^3-3xy\left(x+y\right)\)

\(=2^3-3\cdot1\cdot2\)

=2

2)\(x^2+y^2=\left(x+y\right)^2-2xy=8^2-2\cdot\left(-20\right)=104\)

\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=8^3-3\cdot\left(-20\right)\cdot8=512+480=992\)

\(x^2+y^2+xy=\left(x+y\right)^2-xy=8^2-\left(-20\right)=64+20=84\)

thanh
Xem chi tiết
Rin Huỳnh
4 tháng 9 2021 lúc 11:54

Biến đổi tương đương nhé bạn.

Nguyễn Lê Phước Thịnh
4 tháng 9 2021 lúc 12:52

a: Ta có: \(\left(x+y\right)^2\)

\(=x^2+2xy+y^2\)

\(\Leftrightarrow x^2+y^2=\dfrac{\left(x+y\right)^2}{2xy}\ge\dfrac{\left(x+y\right)^2}{2}\forall x,y>0\)

Nguyễn Hữu Quang
Xem chi tiết

Bài 3:

a, (\(x\)+y+z)2

=((\(x\)+y) +z)2

= (\(x\) + y)2 + 2(\(x\) + y)z + z2

\(x^2\) + 2\(xy\) + y2 + 2\(xz\) + 2yz + z2

=\(x^2\) + y2 + z2 + 2\(xy\) + 2\(xz\) + 2yz

 

b, (\(x-y\))(\(x^2\) + y2 + z2 - \(xy\) - yz - \(xz\))

\(x^3\) + \(xy^2\) + \(xz^2\) - \(x^2\)y - \(xyz\) - \(x^2\)z - y3 

Đến dây ta thấy xuất hiện \(x^3\) - y3 khác với đề bài, em xem lại đề bài nhé

c,

(\(x\) + y + z)3 

=(\(x\) + y)3 + 3(\(x\) + y)2z + 3(\(x\)+y)z2 + z3

\(x^3\) + 3\(x^2\)y + 3\(xy^{2^{ }}\) + y3 +  3(\(x\)+y)z(\(x\) + y + z) + z3

\(x^3\) + y3 + z3 + 3\(xy\)(\(x\) + y) + 3(\(x+y\))z(\(x+y+z\))

\(x^3\) + y3 + z+ 3(\(x\) + y)( \(xy\) + z\(x\) + yz + z2)

\(x^3\) + y3 + z3 + 3(\(x\) + y){(\(xy+xz\)) + (yz + z2)}

\(x^3\) + y3 + z3 + 3(\(x\) + y){ \(x\)( y +z) + z(y+z)}

\(x^3\) + y3 + z3 + 3(\(x\) + y)(y+z)(\(x+z\)) (đpcm)

 

 

nhân
Xem chi tiết
Tryechun🥶
23 tháng 3 2022 lúc 14:36

thay x=-1;y=3 vào biểu thức B ta đc

B=(-1)2.32+(-1).3+(-1)2+32

B=9+(-3)+(-1)+9

B=14

MiRi
23 tháng 3 2022 lúc 14:58

b/ Tại \(x=-1;y=3\) ta có 

B= \(\left(-1\right)^2.\left(3\right)^2+\left(-1\right).3+\left(-1\right)^3+\left(3\right)^3\)

B= \(1.9+\left(-3\right)+\left(-1\right)+27\)

B= \(9+\left(-3\right)+\left(-1\right)+27\)

B=  32

quoc trananh
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 7 2020 lúc 9:26

Ta có: \(x^3+y^3+z^3-3xyz\)

\(=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)

\(=\left[\left(x+y\right)^3+z^3\right]-\left[3xy\left(x+y\right)+3xyz\right]\)

\(=\left(x+y+z\right)\left[\left(x+y\right)^2-z\left(x+y\right)+z^2\right]-\left[3xy\left(x+y+z\right)\right]\)

\(=\left(x+y+z\right)\left(x^2+2xy+y^2-zx-zy+z^2\right)-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+2xy+y^2-zx-zy+z^2-3xy\right)\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)(đpcm)

💋Amanda💋
8 tháng 5 2020 lúc 20:27
https://i.imgur.com/9C6VYPl.jpg
Nguyệt Huyết Hắc Bạch
Xem chi tiết
Lê Song Phương
29 tháng 8 2023 lúc 7:04

 a) Ta thấy \(xy=\dfrac{\left(x+y\right)^2-\left(x^2+y^2\right)}{2}=\dfrac{3^2-5}{2}=2\)

\(\Rightarrow x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)\) \(=3\left(5-2\right)=9\)

 b) Ta thấy \(xy=\dfrac{-\left(x-y\right)^2+\left(x^2+y^2\right)}{2}=\dfrac{15-5^2}{2}=-5\)

\(\Rightarrow x^3-y^3=\left(x-y\right)\left(x^2+y^2+xy\right)\) \(=5\left(15-5\right)=50\)

Tên ?
Xem chi tiết
Akai Haruma
11 tháng 7 2021 lúc 18:53

Lời giải:
a.

$x^3+y^3=(x+y)^3-3xy(x+y)=9^3-3.9.18=243$

$x^4+y^4=(x^2+y^2)^2-2x^2y^2=[(x+y)^2-2xy]^2-2x^2y^2$

$=[9^2-2.18]^2-2.18^2=1377$

Nếu $x\geq y$ thì:

$x^3-y^3=(x-y)(x^2+xy+y^2)$

$=|x-y|[(x+y)^2-xy]=\sqrt{(x+y)^2-4xy}[(x+y)^2-xy]$

$=\sqrt{9^2-4.18}(9^2-18)=189$

Nếu $x< y$ thì $x^3-y^3=-189$

b.

$A=(x+y)^2-6(x+y)+y-5$

$=(-9)^2-6(-9)+y-5=130+y$

Chưa đủ cơ sở để tính biểu thức.

Nguyễn Lê Phước Thịnh
11 tháng 7 2021 lúc 23:54

a) \(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=9^3-3\cdot18\cdot9=243\)

\(x^4+y^4=\left(x^2+y^2\right)^2-2x^2y^2\)

\(=\left[\left(x+y\right)^2-2xy\right]^2-2\left(xy\right)^2\)

\(=\left(9^2-2\cdot18\right)^2-2\cdot18^2\)

\(=45^2-2\cdot324\)

=1377

Linh Nguyễn
Xem chi tiết
ILoveMath
13 tháng 8 2021 lúc 11:04

B=x2y2+xy+x3+y3

Thay x=-1, y=3 ta có:

B=x2y2+xy+x3+y3

  =(-1)2.32+(-1).3+(-1)3+33

  = 1.9-3-1+27

  = 9-3-1+27

  = 32

linh phạm
13 tháng 8 2021 lúc 11:07

 giá trị biểu thức tại x = –1; y = 3 là:

\(B=\left(-1\right)^2.3^2+\left(-1\right).3+\left(-1\right)^3+3^3\\B=9-3-1+27\\ B=32 \)

 

Nguyễn Lê Phước Thịnh
13 tháng 8 2021 lúc 11:48

Thay x=-1 và y=3 vào B, ta được:

\(B=\left(-1\right)^2\cdot3^2+\left(-1\right)\cdot3+\left(-1\right)^3+3^3=32\)

Kwalla
Xem chi tiết
『Kuroba ム Tsuki Ryoo...
3 tháng 10 2023 lúc 5:19

`#3107.101107`

`D = x^3 - y^3 - 3xy` biết `x - y - 1 = 0`

Ta có:

`x - y - 1 = 0`

`=> x - y = 1`

`D = x^3 - y^3 - 3xy`

`= (x - y)(x^2 + xy + y^2) - 3xy`

`= 1 * (x^2 + xy + y^2) - 3xy`

`= x^2+ xy + y^2 - 3xy`

`= x^2 - 2xy + y^2`

`= x^2 - 2*x*y + y^2`

`= (x - y)^2`

`= 1^2 = 1`

Vậy, với `x - y = 1` thì `D = 1`

________

`E = x^3 + y^3` với `x + y = 5; x^2 + y^2 = 17`

`x + y = 5`

`=> (x + y)^2 = 25`

`=> x^2 + 2xy + y^2 = 25`

`=> 2xy = 25 - (x^2 + y^2)`

`=> 2xy = 25 - 17`

`=> 2xy = 8`

`=> xy = 4`

Ta có:

`E = x^3 + y^3`

`= (x + y)(x^2 - xy + y^2)`

`= 5 * [ (x^2 + y^2) - xy]`

`= 5 * (17 - 4)`

`= 5 * 13`

`= 65`

Vậy, với `x + y = 5; x^2 + y^2 = 17` thì `E = 65`

________

`F = x^3 - y^3` với `x - y = 4; x^2 + y^2 = 26`

Ta có:

`x - y = 4`

`=> (x - y)^2 = 16`

`=> x^2 - 2xy + y^2 = 16`

`=> (x^2 + y^2) - 2xy = 16`

`=> 2xy = (x^2 + y^2) - 16`

`=> 2xy = 26 - 16`

`=> 2xy = 10`

`=> xy = 5`

Ta có:

`F = x^3 - y^3`

`= (x - y)(x^2 + xy + y^2)`

`= 4 * [ (x^2 + y^2) + xy]`

`= 4 * (26 + 5)`

`= 4*31`

`= 124`

Vậy, với `x - y = 4; x^2 + y^2 = 26` thì `F = 124.`