Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ha Pham
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 5 2023 lúc 21:36

a:=>3x=15

=>x=5

b: =>8-11x<52

=>-11x<44

=>x>-4

c: \(VT=\left(\dfrac{x^2-\left(x-6\right)^2}{x\left(x+6\right)\left(x-6\right)}\right)\cdot\dfrac{x\left(x+6\right)}{2x-6}+\dfrac{x}{6-x}\)

\(=\dfrac{12x-36}{2x-6}\cdot\dfrac{1}{x-6}-\dfrac{x}{x-6}=\dfrac{6}{x-6}-\dfrac{x}{x-6}=-1\)

karina
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 2 2022 lúc 20:17

\(\Leftrightarrow36\left(x+6\right)+36\left(x-6\right)=\dfrac{9}{2}\left(x^2-36\right)\)

\(\Leftrightarrow x^2\cdot\dfrac{9}{2}-162-72x=0\)

\(\Leftrightarrow9x^2-144x-324=0\)

\(\Leftrightarrow x^2-16x-36=0\)

=>(x-18)(x+2)=0

=>x=18 hoặc x=-2

ILoveMath đã xóa
ILoveMath
23 tháng 2 2022 lúc 20:19

ĐKXĐ:\(x\ne\pm6\)

\(\dfrac{36}{x-6}+\dfrac{36}{x+6}=4,5\\ \Leftrightarrow36\left(\dfrac{1}{x-6}+\dfrac{1}{x+6}\right)=4,5\\ \Leftrightarrow\dfrac{x+6}{\left(x-6\right)\left(x+6\right)}+\dfrac{x-6}{\left(x-6\right)\left(x+6\right)}=\dfrac{1}{8}\\ \Leftrightarrow\dfrac{x+6+x-6}{x^2-36}=\dfrac{1}{8}\\ \Leftrightarrow\dfrac{2x}{x^2-36}=\dfrac{1}{8}\\ \Leftrightarrow x^2-36=16x\\ \Leftrightarrow x^2-16x-36=0\\ \Leftrightarrow\left(x^2+2x\right)-\left(18x+36\right)=0\\ \Leftrightarrow x\left(x+2\right)-18\left(x+2\right)=0\\ \Leftrightarrow\left(x+2\right)\left(x-18\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-2\left(tm\right)\\x=18\left(tm\right)\end{matrix}\right.\)

Phạm Thùy Trang
Xem chi tiết
ʟɪʟɪ
30 tháng 4 2021 lúc 20:14

\(\dfrac{36}{x+6}+\dfrac{36}{x-6}=4,5\)

\(\Leftrightarrow36\left(x-6\right)+36\left(x+6\right)=4,5\left(x^2-36\right)\)

\(\Leftrightarrow36x-216+36x+216=4,5x^2-162\)

\(\Leftrightarrow-4,5x^2+72x+162=0\)

\(\Leftrightarrow\left(x-18\right)\left(-4,5x-9\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=18\\x=-2\end{matrix}\right.\)

Lưu huỳnh ngọc
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 8 2021 lúc 22:27

1: Ta có: \(\dfrac{x+2}{x-2}+\dfrac{2}{x+2}=\dfrac{x^2}{x^2-4}\)

Suy ra: \(x^2+4x+4+2x-4=x^2\)

\(\Leftrightarrow6x=0\)

hay \(x=0\left(nhận\right)\)

2: Ta có: \(\dfrac{1}{x-6}-\dfrac{2}{x+6}=\dfrac{3x+6}{x^2-36}\)

Suy ra: \(x+6-2x+12=3x+6\)

\(\Leftrightarrow-x-3x=6-18=-12\)

hay \(x=3\left(nhận\right)\)

Akai Haruma
19 tháng 8 2021 lúc 22:30

Lời giải:
1. ĐKXĐ: $x\neq \pm 2$

PT \(\Leftrightarrow \frac{(x+2)^2+2(x-2)}{(x-2)(x+2)}=\frac{x^2}{x^2-4}\)

\(\Leftrightarrow \frac{x^2+6x}{x^2-4}=\frac{x^2}{x^2-4}\)

\(\Rightarrow x^2+6x=x^2\Leftrightarrow x=0\) (tm)

2. ĐKXĐ: $x\neq \pm 6$

PT \(\Leftrightarrow \frac{6+x-2(x-6)}{(x-6)(6+x)}=\frac{3x+6}{x^2-36}\)

\(\Leftrightarrow \frac{18-x}{x^2-36}=\frac{3x+6}{x^2-36}\)

\(\Rightarrow 18-x=3x+6\Leftrightarrow 12=4x\Leftrightarrow x=3\) (tm)

 

Ling ling 2k7
19 tháng 8 2021 lúc 22:35

1) \(\dfrac{x+2}{x-2}+\dfrac{2}{x+2}=\dfrac{x^2}{x^2-4}\)

\(\Leftrightarrow\dfrac{x+2}{x-2}+\dfrac{2}{x+2}-\dfrac{x^2}{\left(x-2\right)\left(x+2\right)}\)=0

\(\Leftrightarrow\dfrac{\left(x+2\right)^2+2\left(x-2\right)-x^2}{\left(x-2\right)\left(x+2\right)}\)=0

\(\Leftrightarrow\dfrac{x^2+2x2+2^2+2x-4-x^2}{\left(x-2\right)\left(x+2\right)}\)=0

\(\Leftrightarrow\dfrac{x^2-x^2+4x+2x+4-4}{\left(x-2\right)\left(x+2\right)}\)=0

\(\Leftrightarrow\dfrac{6x}{\left(x-2\right)\left(x+2\right)}\)=0

\(\Leftrightarrow6x=0\)

\(\Rightarrow x=0\)

2) \(\dfrac{1}{x-6}-\dfrac{2}{6+x}=\dfrac{3x+6}{x^2-36}\)

\(\Leftrightarrow\dfrac{1}{x-6}-\dfrac{2}{x+6}-\dfrac{\left(3x+6\right)}{\left(x-6\right)\left(x+6\right)}\)=0

\(\Leftrightarrow\dfrac{1\left(x+6\right)-2\left(x-6\right)-\left(3x+6\right)}{\left(x-6\right)\left(x+6\right)}\)=0

\(\Leftrightarrow\dfrac{x+6-2x+12-3x-6}{\left(x-6\right)\left(x+6\right)}\)=0

\(\Leftrightarrow\dfrac{x-2x-3x+6-6+12}{\left(x-6\right)\left(x+6\right)}\)=0

\(\Leftrightarrow\dfrac{-4x+12}{\left(x-6\right)\left(x+6\right)}\)=0

\(\Leftrightarrow-4x+12=0\)

\(\Leftrightarrow-4x=12\)

\(\Rightarrow x=3\)

 

Đinh Cẩm Tú
Xem chi tiết
Yeutoanhoc
27 tháng 2 2021 lúc 20:39

`(x/(x+1))^2+(x/(x-1))^2=90(x ne -1,1)`

`<=>x^2/(x+1)^2+x^2/(x-1)^2=90`

`<=>x^2(x-1)^2+x^2(x-1)^2=90(x^2-1)^2`

`<=>x^2(2x^2+2)=90(x^4-2x^2+1)`

`<=>2x^4+2x^2=90x^4-180x^2+90`

`<=>88x^4-182x^2+90=0`

`<=>88x^4-110x^2-72x^2+90=0`

`<=>22x^2(4x^2-5)-18(4x^2-5)=0`

`<=>(4x^2-5)(22x^2-18)=0`

`<=>(4x^2-5)(11x^2-9)=0`

`<=>` $\left[ \begin{array}{l}4x^2=5\\11x^2=9\end{array} \right.$

`<=>` $\left[ \begin{array}{l}x=\sqrt{\dfrac{5}{4}}\\x=-\sqrt{\dfrac{5}{4}}\\x=\sqrt{\dfrac{9}{11}}\\x=-\sqrt{\dfrac{9}{11}}\end{array} \right.$

Vậy `S={\sqrt{9/11},-\sqrt{9/11},\sqrt{5/4},-\sqrt{5/4}}`

Aikatsu
27 tháng 2 2021 lúc 20:47

\(\left(\dfrac{x}{x+1}\right)^2+\left(\dfrac{x}{x-1}\right)^2=90\)

\(\Leftrightarrow\dfrac{x^2}{\left(x+1\right)^2}+\dfrac{x^2}{\left(x-1\right)^2}=90\)

\(\Leftrightarrow\dfrac{x^2\left(x-1\right)^2}{\left(x+1\right)^2\left(x-1\right)^2}+\dfrac{x^2\left(x+1\right)^2}{\left(x+1\right)^2\left(x-1\right)^2}=90\)

\(\Leftrightarrow\dfrac{x^2\left(x-1\right)^2+x^2\left(x+1\right)^2-90\left(x-1\right)^2\left(x+1\right)^2}{\left(x+1\right)^2\left(x-1\right)^2}=0\)

\(\Rightarrow x^2\left(x^2-2x+1\right)+x^2\left(x^2+2x+1\right)-90\left(x^2-1\right)^2=0\)

\(\Leftrightarrow x^4-2x^3+x^2+x^4+2x^3+x^2-90x^4+90x^2-90=0\)

\(\Leftrightarrow-88x^4+92x^2-90=0\)

Nguyễn Việt Lâm
27 tháng 2 2021 lúc 21:13

\(\left(\dfrac{x}{x+1}\right)^2+\left(\dfrac{x}{x-1}\right)^2+\dfrac{2x^2}{x^2-1}-\dfrac{2x^2}{x^2-1}=90\)

\(\Leftrightarrow\left(\dfrac{x}{x+1}+\dfrac{x}{x-1}\right)^2-\dfrac{2x^2}{x^2-1}=90\)

\(\Leftrightarrow\left(\dfrac{2x^2}{x^2-1}\right)^2-\dfrac{2x^2}{x^2-1}-90=0\)

Đặt \(\dfrac{2x^2}{x^2-1}=t\Rightarrow t^2-t-90=0\Rightarrow\left[{}\begin{matrix}t=10\\t=-9\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{2x^2}{x^2-1}=10\\\dfrac{2x^2}{x^2-1}=-9\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}4x^2=5\\11x^2=9\end{matrix}\right.\)

\(\Leftrightarrow...\)

Khánh Chi Trần
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 1 2022 lúc 11:56

\(\Leftrightarrow\dfrac{4\cdot90\cdot\left(x+5\right)-4\cdot90\cdot x}{4x\left(x+5\right)}=\dfrac{x\left(x+5\right)}{4x\left(x+5\right)}\)

\(\Leftrightarrow x^2+5x-1800=0\)

\(\text{Δ}=5^2-4\cdot1\cdot\left(-1800\right)=7225>0\)

Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{-5-85}{2}=\dfrac{-90}{2}=-45\left(nhận\right)\\x_2=\dfrac{-5+85}{2}=40\left(nhận\right)\end{matrix}\right.\)

44.Phương Tú
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 3 2022 lúc 22:25

\(\Leftrightarrow\dfrac{x-5}{95}-1+\dfrac{x-132}{32}+1=\dfrac{x-131}{31}+1+\dfrac{x-10}{90}-1\)

=>x-100=0

hay x=100

Võ Thị Kim Dung
Xem chi tiết
Trần Manh
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 6 2023 lúc 13:08

=>x^2-4+x^2-3x=x^2+6

=>x^2-3x-4=6

=>x^2-3x-10=0

=>(x-5)(x+2)=0

=>x=5(nhận) hoặc x=-2(loại)