Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Văn Thắng Hồ
Xem chi tiết
Nguyễn Việt Lâm
16 tháng 8 2020 lúc 12:50

1.

ĐKXĐ: \(x\ge\frac{1}{2}\)

\(\Leftrightarrow\sqrt{2x-1}-1+\sqrt{x^2+3}-2+x-1=0\)

\(\Leftrightarrow\frac{2\left(x-1\right)}{\sqrt{2x-1}+1}+\frac{\left(x-1\right)\left(x+1\right)}{\sqrt{x^2+3}+2}+x-1=0\)

\(\Leftrightarrow\left(x-1\right)\left(\frac{2}{\sqrt{2x-1}+1}+\frac{x+1}{\sqrt{x^2+3}+2}+1\right)=0\)

\(\)\(\Leftrightarrow x=1\)

Nguyễn Việt Lâm
16 tháng 8 2020 lúc 12:53

2.

ĐKXĐ: ...

Đặt \(\left\{{}\begin{matrix}\sqrt{x^2+x+1}=a>0\\\sqrt{x^2-3x-1}=b\ge0\end{matrix}\right.\)

\(\Rightarrow a=b+\frac{1}{2}\left(a^2-b^2\right)\)

\(\Leftrightarrow\left(a-b\right)\left(a+b-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=b\left(1\right)\\a=2-b\left(2\right)\end{matrix}\right.\)


\(\left(1\right)\Leftrightarrow x^2+x+1=x^2-3x-1\)

\(\Leftrightarrow x=\frac{1}{2}\)

\(\left(2\right)\Leftrightarrow\sqrt{x^2+x+1}=2-\sqrt{x^2-3x-1}\)

\(\Rightarrow x^2+x+1=x^2-3x+3-4\sqrt{x^2-3x-1}\)

\(\Rightarrow2\sqrt{x^2-3x-1}=1-2x\)

\(\Rightarrow4x^2-12x-4=4x^2-4x+1\)

\(\Rightarrow x=-\frac{5}{8}\)

Do các bước biến đổi ko tương đương nên cần thay nghiệm này vào pt ban đầu để kiểm tra (bạn tự kiểm tra)

Nguyễn Việt Lâm
16 tháng 8 2020 lúc 12:58

3.

- Với \(x=\left\{16;17\right\}\) là 2 nghiệm của pt

- Với \(x< 16\):

\(\left\{{}\begin{matrix}\left|x-16\right|^4>0\\\left|x-17\right|>1\Rightarrow\left|x-17\right|^3>1\end{matrix}\right.\)

\(\Rightarrow\left|x-16\right|^4+\left|x-17\right|^3>1\)

Pt vô nghiệm

- Với \(x>17\Rightarrow\left\{{}\begin{matrix}\left|x-17\right|^3>0\\\left|x-16\right|>1\Rightarrow\left|x-16\right|^4>1\end{matrix}\right.\)

\(\Rightarrow\left|x-16\right|^4+\left|x-17\right|^3>1\)

Pt vô nghiệm

- Với \(16< x< 17\Rightarrow\left\{{}\begin{matrix}0< \left|x-16\right|< 1\\0< \left|17-x\right|< 1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\left|x-16\right|^4< x-16\\\left|17-x\right|^3< 17-x\end{matrix}\right.\)

\(\Rightarrow\left|x-16\right|^4+\left|x-17\right|^3< x-16+17-x=1\) (vô nghiệm)

Vậy pt có đúng 2 nghiệm \(\left[{}\begin{matrix}x=16\\x=17\end{matrix}\right.\)

Kaneki Ken
Xem chi tiết
Không Tên
3 tháng 4 2020 lúc 16:19

Câu 1 là \(\left(8x-4\right)\sqrt{x}-1\) hay là \(\left(8x-4\right)\sqrt{x-1}\)?

Khách vãng lai đã xóa
Trần Phúc Khang
3 tháng 4 2020 lúc 17:51

Câu 1:ĐK \(x\ge\frac{1}{2}\)

\(4x^2+\left(8x-4\right)\sqrt{x}-1=3x+2\sqrt{2x^2+5x-3}\)

<=> \(\left(4x^2-3x-1\right)+4\left(2x-1\right)\sqrt{x}-2\sqrt{\left(2x-1\right)\left(x+3\right)}\)

<=> \(\left(x-1\right)\left(4x+1\right)+2\sqrt{2x-1}\left(2\sqrt{x\left(2x-1\right)}-\sqrt{x+3}\right)=0\)

<=> \(\left(x-1\right)\left(4x+1\right)+2\sqrt{2x-1}.\frac{8x^2-4x-x-3}{2\sqrt{x\left(2x-1\right)}+\sqrt{x+3}}=0\)

<=>\(\left(x-1\right)\left(4x+1\right)+2\sqrt{2x-1}.\frac{\left(x-1\right)\left(8x+3\right)}{2\sqrt{x\left(2x-1\right)}+\sqrt{x+3}}=0\)

<=> \(\left(x-1\right)\left(4x+1+2\sqrt{2x-1}.\frac{8x+3}{2\sqrt{x\left(2x-1\right)}+\sqrt{x+3}}\right)=0\)

Với \(x\ge\frac{1}{2}\)thì \(4x+1+2\sqrt{2x-1}.\frac{8x-3}{2\sqrt{x\left(2x-1\right)}+\sqrt{x+3}}>0\)

=> \(x=1\)(TM ĐKXĐ)

Vậy x=1

Khách vãng lai đã xóa
Trần Phúc Khang
3 tháng 4 2020 lúc 18:06

câu 2 ĐK \(x\ge1\)

\(\left(5x+8\right)\sqrt{2x-1}+7x\sqrt{x+3}=9x+18-\left(x+26\right)\sqrt{x-1}=0\)

<=> \(\left(5x+8\right)\left(\sqrt{2x-1}-1\right)+7x\left(\sqrt{x+3}-2\right)+\left(x+26\right)\sqrt{x-1}+10\left(x-1\right)=0\)

<=>\(\left(5x+8\right).\frac{2x-2}{\sqrt{2x-1}+1}+7x.\frac{x+3-4}{\sqrt{x+3}+2}+\left(x+26\right)\sqrt{x-1}+10\left(x-1\right)=0\)

<=> \(\sqrt{x-1}\left(\frac{2\left(5x+8\right)\sqrt{x-1}}{\sqrt{2x-1}+1}+\frac{7x\sqrt{x-1}}{\sqrt{x+3}+2}+\left(x+26\right)+10\sqrt{x-1}\right)=0\)

Với \(x\ge1\)thì cái trong ngoặc >0

=> \(x=1\)

Vậy x=1

Khách vãng lai đã xóa
Bảo Nguyễn
Xem chi tiết
Rau
5 tháng 7 2017 lúc 13:24

\(\sqrt{x^2+x+1}+\sqrt{x^2-x+1}\ge2\sqrt[4]{x^4+x^2+1}\ge2>\frac{1}{2}.\\ \)
\(=>.\) VẬY PHƯƠNG TRÌNH VÔ NGHIỆM.
 

Ánh Dương
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 10 2019 lúc 13:29

1/

a/ ĐKXĐ: ...

\(A=\frac{\left(\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}+\frac{\sqrt{x}\left(\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)

\(=\left(2\sqrt{x}-1\right)\left(\frac{x-\sqrt{x}+1+\sqrt{x}\left(1-\sqrt{x}\right)}{\left(1-\sqrt{x}\right)\left(x-\sqrt{x}+1\right)}\right)\)

\(=\frac{2\sqrt{x}-1}{\left(1-\sqrt{x}\right)\left(x-\sqrt{x}+1\right)}\)

Câu b không rút gọn được, lập phương lên thì biểu thức là nghiệm của pt \(x^3+6x-6=0\) ko có nghiệm đẹp

Bài 2:

a/ ĐKXĐ: \(x\ge2\)

\(\Leftrightarrow\sqrt{\left(x-1\right)\left(x-2\right)}-\sqrt{x-2}-\sqrt{\left(x-1\right)\left(x+3\right)}+\sqrt{x+3}=0\)

\(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x-1}-1\right)-\sqrt{x+3}\left(\sqrt{x-1}-1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-2}-\sqrt{x+3}\right)\left(\sqrt{x-1}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=1\\\sqrt{x-2}=\sqrt{x+3}\left(vn\right)\end{matrix}\right.\) \(\Rightarrow x=2\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
21 tháng 10 2019 lúc 13:29

2/

b/

\(\Leftrightarrow\sqrt{\left(x-4\right)\left(2x-1\right)}+3\sqrt{2x-1}=\sqrt{\left(x+11\right)\left(2x-1\right)}\)

Để phương trình đã cho xác định thì:

\(\left\{{}\begin{matrix}\left(x-4\right)\left(2x-1\right)\ge0\\2x-1\ge0\\\left(x+11\right)\left(2x-1\right)\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x\ge4\\x\le\frac{1}{2}\left(1\right)\end{matrix}\right.\\x\ge\frac{1}{2}\left(2\right)\end{matrix}\right.\)

Từ (1) và (2) \(\Rightarrow x=\frac{1}{2}\) thay vào pt thấy thỏa mãn

Vậy \(x=\frac{1}{2}\) là nghiệm duy nhất

c/ ĐKXĐ: ...

\(\Leftrightarrow x^2-2x+1+2017x-2016-2\sqrt{2017x-2016}+1=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(\sqrt{2017x-2016}-1\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\\sqrt{2017x-2016}-1=0\end{matrix}\right.\) \(\Rightarrow x=1\)

d/ \(\Leftrightarrow\sqrt{\left(1+x^2\right)^3}-1+3x^4-4x^3=0\)

\(\Leftrightarrow\frac{\left(1+x^2\right)^3-1}{\left(1+x^2\right)^3+1}+x^2\left(3x^2-4x\right)=0\)

\(\Leftrightarrow\frac{x^6+3x^4+3x^2}{\left(1+x^2\right)^2+1}+x^2\left(3x^2-4x\right)=0\)

\(\Leftrightarrow x^2\left(\frac{x^4+3x^3+3}{x^4+2x^2+2}+3x^2-4x\right)=0\)

\(\Rightarrow x=0\)

Khách vãng lai đã xóa
Hân Đỗ
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 7 2023 lúc 20:53

2:

a: =căn 17-4-căn 17=-4

b: =5-2căn 3-2căn 3=5-4căn 3

1:

a: =>|x+1|=-x

=>x<=0 và (x+1)^2=x^2

=>x<=0 và (x+1+x)(x+1-x)=0

=>x=-1/2

Lê Hương Giang
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 8 2021 lúc 19:06

a: Ta có: \(\sqrt{4x+20}-3\sqrt{x+5}+\dfrac{4}{3}\sqrt{9x+45}=6\)

\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)

\(\Leftrightarrow3\sqrt{x+5}=6\)

\(\Leftrightarrow x+5=4\)

hay x=-1

b: Ta có: \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)

\(\Leftrightarrow\dfrac{1}{2}\sqrt{x-1}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)

\(\Leftrightarrow\sqrt{x-1}=17\)

\(\Leftrightarrow x-1=289\)

hay x=290

Mai Thị Thúy
Xem chi tiết
Mai Thị Thúy
Xem chi tiết
Nguyễn Trung Hiếu
Xem chi tiết
ngonhuminh
17 tháng 1 2017 lúc 16:58

Nhìn không đủ chán rồi không dám động vào

Vũ Như Mai
17 tháng 1 2017 lúc 17:05

Viết đề kiểu gì v @@

Vũ Như Mai
17 tháng 1 2017 lúc 17:12

À do nãy máy lag sr :) Chứ bài đặt ẩn phụ mệt lắm :)