Cho tam giác ABC vuông tại A, đường cao AH. Biết AB=20cm, HC=9cm. Tính AH
Cho tam giác ABC vuông tại A, đường cao AH biết AB= 20cm, HC= 9cm. Tính độ dài AH
Gọi AC=a;BH=b
thì ta có hệ pt \(\sqrt{a^2+20^2}=9+b\)(pytago)
\(\frac{20a}{b+9}=\sqrt{9b}\)(hệ thức lượng trong tam giác vuông)
\(\sqrt{AC^2+20^2}=BC=9+BH\)
\(\frac{20AC}{BH+HC}=AH=\sqrt{BH\cdot HC}\)
Cho tam giác ABC vuông tại A có đường cao AH. Biết AB= 20cm, HC= 9cm. Tính độ dài BH, AH
AB^2=BH*BC
=>BH(BH+9)=20^2=400
=>BH^2+9BH-400=0
=>(BH+25)(BH-16)=0
=>BH=16cm
AH=căn BH*CH=12(cm)
cho tam giác ABC vuông tại A, đường cao AH, AB=20cm, HC=9cm. tính độ dài AH
Cho tam giác ABC vuông tại A, đường cao Ah, AB=20cm, HC=9cm. Tính độ dài AH
Áp dụng hệ thực giữa cạnh và đường cao trong tam giác vuông có:
\(AH^2=AB.BH\)
\(\Leftrightarrow20^2=BH\left(BH+9\right)\)
\(\Leftrightarrow BH^2+94H-400=0\)
\(\Rightarrow BH=16\left(cm\right)\)
Lại có: \(BC=BH+HC=16+9=25\left(cm\right)\)
\(\Rightarrow AH^2=BH.CH=16.9=12^2\)
\(\Rightarrow AH=12\left(cm\right)\)
Áp dụng hệ thức giữa cạnh và đường cao trong tam giác vuông ta có:
AB^2=BH.BC
<=>20^2=BH.(BH + 9)
<=>BH^2 + 9BH-400=0
=> BH=16cm
Mà BC=BH + HC=16 + 9=25cm
AH^2 = BH.HC = 16.9 = 12^2
suy ra AH = 12cm.
Vậy AH=12cm.
Bài 1: Cho tam giác ABC vuông tại A, đường cao AH.
a) Biết AB= 9cm, BC= 15cm. Tính BH, HC
b) Biết BH= 1cm, HC= 3cm. Tính AB, AC
c) Biết AB= 6cm, AC= 8cm. Tính AH, BC
Bài 2: Cho tam giác ABC vuông tại A, đường cao AH. Biết AB= 3cm, BH= 2,4cm
a) Tính BC, AC, AH, HC b) Tính tỉ số lượng giác của góc B
Bài 3: Cho tam giác ABC có BC= 9cm, góc B= 60 độ, góc C= 40 độ, đường cao AH. Tính AH, AB, AC
Bài 1:
a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AB^2=BH\cdot BC\)
\(\Leftrightarrow BH=\dfrac{9^2}{15}=\dfrac{81}{15}=5.4\left(cm\right)\)
Ta có: BH+CH=BC(H nằm giữa B và C)
nên CH=BC-BH=15-5,4=9,6(cm)
b) Ta có: BH+CH=BC(H nằm giữa B và C)
nên BC=1+3=4(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC=1\cdot4=4\left(cm\right)\\AC^2=CH\cdot BC=3\cdot4=12\left(cm\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=2\left(cm\right)\\AC=2\sqrt{3}\left(cm\right)\end{matrix}\right.\)
Cho tam giác ABC vuông tại A , đường cao AH. Biết AB =6cm,HC=9cm,tính BC
cho tam giác abc vuông tại a kẻ AH vuông góc với BC biết BH =9cm,AC=20cm,ab=15cm tính hc
△ABC vuông tại A có \(BC^2=AB^2+AC^2\\ \Rightarrow BC=\sqrt{15^2+20^2}=25\left(cm\right)\)
\(\Rightarrow CH=BC-BH=25-9=16\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=15^2+20^2=625\)
hay BC=25(cm)
Ta có: BH+CH=BC(H nằm giữa B và C)
nên CH=BC-BH=25-9=16(cm)
Vậy: CH=16cm
Cho tam giác ABC vuông tại A có AH là đường cao. Biết BH=9cm, HC=1cm. Tính AH; AB; AC và sinC
Cho tam giác ABC vuông tại A, kẻ đường cao AH (H thuộc cạnh BC). Biết HB = 9cm, HC = 16cm. Tính độ dài: AH, AB.