Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngọc Hằng
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 2 2022 lúc 15:30

1: Xét ΔABC có BD là đường phân giác

nên AD/CD=AB/BC=3/5

2: Xét ΔCHD vuông tại H và ΔCAB vuông tại A có 

\(\widehat{C}\) chung

do đó: ΔCHD∼ΔCAB

Suy ra: HD/AB=CD/CB

hay \(CD\cdot AB=HD\cdot CB\)

Gam Nguyen
Xem chi tiết
Gam Nguyen
15 tháng 8 2021 lúc 16:31

mọi người giúp e với ạ e đg cần gấp

Edogawa Conan
15 tháng 8 2021 lúc 17:28

a)Ta có: 62+82=102

   ⇒  AB2+AC2=BC2

  ⇒ ΔABC vuông tại A (Py-ta-go đảo)

b)Ta có:\(AB^2=BD.BC\Leftrightarrow BD=\dfrac{AB^2}{BC}=\dfrac{6^2}{10}=3,6cm\) (hệ thức lượng)

  Ta có: \(AC^2=CD.BC\Leftrightarrow CD=\dfrac{AC^2}{BC}=\dfrac{8^2}{10}=6,4cm\) (HTL)

  Ta có: \(AD.BC=AB.AC\Leftrightarrow AD=\dfrac{AB.AC}{BC}=\dfrac{6.8}{10}=4,8cm\) (HTL)

c)Vì P là hình chiếu của D trên AB

  ⇒DP⊥AB \(\Rightarrow\widehat{APD}=90^o\)

Xét ΔAPD và ΔADB có:

       \(\widehat{A}:chung\)

       \(\widehat{APD}=\widehat{ADB}=90^o\)

⇒ ΔAPD ∼ ΔADB (g-g)

 \(\Rightarrow\dfrac{AP}{AD}=\dfrac{AD}{AB}\Rightarrow AP.AB=AD^2\) (1)

Chứng minh tương tự,ta có: ΔADQ ∼  ΔACD (g-g)

                                      \(\Rightarrow\dfrac{AD}{AC}=\dfrac{AQ}{AD}\Rightarrow AC.AQ=AD^2\) (2)

Ta có: AD2 = BD.CD (HTL)   (3)

Từ (1)(2)(3)⇒AP.AB=AC.AQ=BD.CD=AD2

d)Xét tg APDQ có: \(\widehat{DPA}=\widehat{PAQ}=\widehat{AQD}=90^o\)

  ⇒ APDQ là hình chữ nhật

  ⇒ AD=PQ và \(\widehat{PDQ}=90^o\)

Ta có: AP.BP=DP2 (HTL trong ΔADB)

          AQ.CQ=DQ2 (HTL trong ΔADC)

⇒ AP.BP+AQ.CQ=DP2+DQ2=PQ2 (Py-ta-go trong ΔPDQ vuông tại D)

Mà PQ=AD ⇒ AP.BP+AQ.CQ=AD2

e) Ta có: PQ=AD (cmt)

Mà AD = 4,8 cm

⇒ PQ = 4,8 cm

 

 

Nguyễn Lê Phước Thịnh
15 tháng 8 2021 lúc 19:25

a: Xét ΔABC có 

\(BC^2=AB^2+AC^2\)

nên ΔBAC vuông tại A

Nguyễn Giang
Xem chi tiết
Phí Đức
27 tháng 3 2021 lúc 17:33

a/ \(BD\) là đường phân giác \(\widehat{BAC}\)

\(\to\dfrac{DA}{DC}=\dfrac{BA}{BC}\) hay \(\dfrac{DA}{DC}=\dfrac{6}{10}=\dfrac{3}{5}\)

\(\to\dfrac{DA}{3}=\dfrac{DC}{5}=\dfrac{DA+DC}{3+5}=\dfrac{AC}{8}=\dfrac{8}{8}=1\)

\(\to\begin{cases}DA=3\\DC=5\end{cases}\)

b/ \(S_{\Delta ABC}=\dfrac{1}{2}.AB.AC=\dfrac{1}{2}.AH.BC\)

\(\to AB.AC=AH.BC\)

\(\to \dfrac{AB.AC}{BC}=AH=\dfrac{6.8}{10}=3,2(cm)\)

Nguyễn Lê Phước Thịnh
27 tháng 3 2021 lúc 21:44

b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH\cdot10=6\cdot8=48\)

hay AH=4,8(cm)

Vậy: AH=4,8cm

An Đinh Khánh
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 7 2023 lúc 23:27

AC=căn 10^2-6^2=8cm

AH=6*8/10=4,8cm

\(AD=\dfrac{2\cdot6\cdot8}{6+8}\cdot cos45=\dfrac{24}{7}\sqrt{2}\left(cm\right)\)

\(HD=\sqrt{AD^2-AH^2}=\dfrac{24}{35}\left(cm\right)\)

AD là phân giác

=>DB/AB=DC/AC

=>DB/3=DC/4=(DB+DC)/(3+4)=10/7

=>DB=30/7cm; DC=40/7cm

Đoàn mạnh hùng
Xem chi tiết
Phan Gia Huy
12 tháng 2 2020 lúc 16:19

EZ thôi,vài đường cơ bản;gộp lại cho nó máu ! À mà tính BD chứ nhỉ ??

A B C x y x D E

Kẻ CE là phân giác góc C cắt BD tại E

Đặt EC=x thì BE=x;đặt ED=y

Áp dụng tính chất đường phân giác ta có:

\(\frac{DA}{DC}=\frac{AB}{BC}=\frac{15}{10}=\frac{3}{2}\left(cm\right)\) khi đó \(DA=3a;DC=2a\)

Ta có:\(15=AC=DA+DC=3a+2a=5a\Rightarrow a=3\)

\(\Rightarrow DA=9;DC=6\)

Dễ thấy \(\Delta EDC~\Delta CDB\left(g.g\right)\Rightarrow\frac{ED}{CD}=\frac{DC}{DB}=\frac{EC}{CB}\)

hay \(\frac{y}{6}=\frac{6}{BD}=\frac{x}{10}=\frac{x+y}{10+6}=\frac{x+y}{16}=\frac{BD}{16}\)

\(\Rightarrow BD^2=96\Rightarrow BD=\sqrt{96}\) số khá xấu,ko bt có nhầm lẫn đâu chăng ??

Khách vãng lai đã xóa
Trungnghia
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 4 2021 lúc 23:13

b) Xét ΔABH vuông tại H và ΔCBA vuông tại A có 

\(\widehat{ABH}\) chung

Do đó: ΔABH\(\sim\)ΔCBA(g-g)

Suy ra: \(\dfrac{AB}{CB}=\dfrac{HB}{AB}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AB^2=BC\cdot BH\)(đpcm)

Trúc Giang
20 tháng 4 2021 lúc 21:36

Có gấp thế nào đi nữa thì phải đủ dữ kiện đề tụi tớ mới giúp được cậu nhé :))

Nguyễn Lê Phước Thịnh
20 tháng 4 2021 lúc 23:12

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow AC^2=BC^2-AB^2=10^2-6^2=64\)

hay AC=8(cm)

Xét ΔABC có BD là đường phân giác ứng với cạnh AC(gt)

nên \(\dfrac{AD}{AB}=\dfrac{CD}{BC}\)(Tính chất đường phân giác của tam giác)

hay \(\dfrac{AD}{6}=\dfrac{CD}{10}\)

mà AD+CD=AC=8cm(D nằm giữa A và C)

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AD}{6}=\dfrac{CD}{10}=\dfrac{AD+CD}{6+10}=\dfrac{AC}{16}=\dfrac{8}{16}=\dfrac{1}{2}\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{AD}{6}=\dfrac{1}{2}\\\dfrac{CD}{10}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AD=3\left(cm\right)\\CD=5\left(cm\right)\end{matrix}\right.\)

Vậy: AD=3cm; CD=5cm 

Dương Minh Anh
Xem chi tiết
Nguyễn Việt Lâm
28 tháng 4 2021 lúc 21:23

\(AC=AB=6\)

Áp dụng định lý phân giác:

\(\dfrac{AD}{AB}=\dfrac{DC}{BC}\Leftrightarrow\dfrac{AD}{6}=\dfrac{6-AD}{10}\)

\(\Leftrightarrow10AD=36-6AD\Rightarrow AD=\dfrac{9}{4}\) (cm)

\(\Rightarrow DC=AC-AD=\dfrac{15}{4}\) (cm)

Nguyễn Huyền
Xem chi tiết
Nguyễn Phương Linh
Xem chi tiết