cho parabol (P): y=x2 và đường thẳng (d):y=x+2
a) vẽ (P) và (d) trên trục tọa độ Oxy
b) tìm tọa độ giao điểm của A,B của (P) và (d)
c) tìm M trên cung AB của (P) sao cho dt MAB lớn nhất
Cho parabol (P): y=x2 và đường thẳng (d): y= -x+2
a) vẽ (p) và (d) trên hệ trục tọa độ Oxy
b) tìm tọa độ giao điểm A,B của (P) và (d)
c)tìm M trên cung AB của (P) sao cho diện tích tam giác MAB lớn nhất
Cho parabol (P): y=x2 và đường thẳng (d): y= -x+2
a) vẽ (p) và (d) trên hệ trục tọa độ Oxy
b) tìm tọa độ giao điểm A,B của (P) và (d)
c)tìm M trên cung AB của (P) sao cho diện tích tam giác MAB lớn nhất
Bài 1. Trong mặt phẳng tọa độ Oxy, cho parabol (P): y = - x2
a) Vẽ parabol (P)
b) Xác định tọa độ các giao điểm A, B của đường thẳng (d): y = - x – 2 và (P).
c) Tìm tọa độ điểm M trên (P) sao cho tam giác MAB cân tại M
Bài 2 Cho parabol (P): y = x2 và đường thẳng (d): y = x + m
CMR: (d) luôn cắt (P) tại 2 điểm phân biệt
a) Giả sử (P) và (d) cắt nhau tại 2 điểm phân biệt có hoành độ x1; x2. Hãy tìm giá trị nhỏ nhất của biểu thức P = khi m thay đổi
Bài 3. Cho parabol (P): y = x2 và đường thẳng (d): y = x + m
Tìm m để đường thẳng (d) cắt (P) tại 2 điểm phân biệt nằm bên phải trục tung
Bài 4. Cho parabol (P): y = x2 và đường thẳng (d): y = x + m
Bài 5. Cho parabol (P): y = x2 và đường thẳng (d): y = mx + 1
Tìm m sao cho (d) cắt (P) tại 2 điểm phân biệt có hoành độ x1; x2 sao cho
Bài 6. Cho parabol (P) : y = x2 và đường thẳng (d) : y = mx - m2 + m +1.
a) Với m = 1, xác định tọa độ các giao điểm A, B của (d) và (P).
b) Tìm các giá trị của m để (d) cắt (P) tại hai điểm phân biệt có hoành độ x1, x2 sao cho .
trên mặt phẳng tọa độ Oxy cho đường thẳng (d):y=-x+2 và Parabol (P):y=x² a)vẽ đồ thị của (d) và (P) trên cùng 1 hệ trục tọa độ b)Tìm tọa độ giao điểm của (P) và (d) (bằng phép tính) c) gọi A và B là 2 giao điểm của (d ) và (P). Tính diện tích tam giác OAB
a
b:
PTHĐGĐ là:
x^2+x-2=0
=>(x+2)(x-1)=0
=>x=-2 hoặc x=1
=>y=4 hoặc y=1
Cho (p):y=\(\dfrac{x^2}{4}\)và (d):y=\(\dfrac{1}{2}\)x+2
a) Vẽ (p) và (d) trên cùng một hệ trục tọa độ Oxy
b) Gọi A và B là các giao điểm cuả (d) và (p). Tìm điểm M trên cung AB của (p) sao cho diện tích △MAB lớn nhất.
Trong mặt phẳng tọa độ Oxy, cho Parabol (P): y=x^2 và đường thẳng (d): y=-x+2
a, Vẽ đồ thị của 2 hàm số trên cùng 1 hệ trục tọa độ
b, Tìm tọa độ giao điểm của (P) và (d)
c, Gọi A,B là 2 giao điểm của (P) và (d). Tính diện tích tam giác OAB
a:
b: PTHĐGĐ là:
x^2+x-2=0
=>(x+2)(x-1)=0
=>x=-2 hoặc x=1
=>y=4 hoặc y=1
trên cùng hệ trục tọa độ , cho parabol ( P):y=x2 và đường thẳng (d): y=(2m-1) x-m2+2 ( m là tham số ) . a) Vẽ parabol ( P) . b) Khi m=2 . Tìm tọa độ giao điểm của ( P ) và (d) bằng phép toán . c) Tìm điều kiện của tham số m để (P) và ( d) cắt nhau tại 2 điểm phân biệt
b: Khi m=2 thì \(y=\left(2\cdot2-1\right)x-2^2+2=3x-2\)
Phương trình hoành độ giao điểm là:
\(x^2-3x+2=0\)
=>x=2 hoặc x=1
Khi x=2 thì y=4
Khi x=1 thì y=1
c: Phương trình hoành độ giao điểm là:
\(x^2-\left(2m-1\right)x+m^2-2=0\)
\(\text{Δ}=\left(2m-1\right)^2-4\left(m^2-2\right)\)
\(=4m^2-4m+1-4m^2+8=-4m+9\)
Để (P) cắt (d) tại hai điểm phân biệt thì -4m+9>0
=>-4m>-9
hay m<9/4
Bài 1: Cho hàm số y=x2 có đồ thị (P) và hàm số y=4x+m có đồ thị (dm) Tìm tất cả các giá trị của m sao cho (dm) và (P) cắt nhau tại hai điểm phân biệt, trong đó trung độ của một trong hai giao điểm đó bằng 1 Bài 2: Trong mặt phẳng Oxy cho parapol (P): y=x2 Trên (P) lấy điểm A có hoành độ xA =-2. Tìm tọa độ điểm M trên trục Ox sao cho |MA-MB| đạt giá trị lớn nhất, biết B(1;1) Bài 3: Tìm a và b để đường thẳng (d): y=(a-2)x+b có hệ số góc bằng 4 và đi qua điểm M(1;-3) Bài 4:Cho hàm số y=2x-5 có đồ thị là đường thẳng (d) a.Gọi A,B lần lượt là giao điểm của (d) với các trục tọa độ Ox,Oy. Tính tọa độ các điểm A,B và vẽ đường thẳng (d) trong mặt phẳng tọa độ Oxy b.Tính diện tích tam giác AOB HELP!!
Bài 1: Cho hàm số y=x2 có đồ thị (P) và hàm số y=4x+m có đồ thị (dm) Tìm tất cả các giá trị của m sao cho (dm) và (P) cắt nhau tại hai điểm phân biệt, trong đó trung độ của một trong hai giao điểm đó bằng 1 Bài 2: Trong mặt phẳng Oxy cho parapol (P): y=x2 Trên (P) lấy điểm A có hoành độ xA =-2. Tìm tọa độ điểm M trên trục Ox sao cho |MA-MB| đạt giá trị lớn nhất, biết B(1;1) Bài 3: Tìm a và b để đường thẳng (d): y=(a-2)x+b có hệ số góc bằng 4 và đi qua điểm M(1;-3) Bài 4:Cho hàm số y=2x-5 có đồ thị là đường thẳng (d) a.Gọi A,B lần lượt là giao điểm của (d) với các trục tọa độ Ox,Oy. Tính tọa độ các điểm A,B và vẽ đường thẳng (d) trong mặt phẳng tọa độ Oxy b.Tính diện tích tam giác AOB HELP!!
Theo Cô si 4x+\frac{1}{4x}\ge2 , đẳng thức xảy ra khi và chỉ khi 4x=\frac{1}{4x}=1\Leftrightarrow x=\frac{1}{4}). Do đó
A\ge2-\frac{4\sqrt{x}+3}{x+1}+2016
A\ge4-\frac{4\sqrt{x}+3}{x+1}+2014
A\ge\frac{4x-4\sqrt{x}+1}{x+1}+2014=\frac{\left(2\sqrt{x}-1\right)^2}{x+1}+2014\ge2014
Hơn nữa A=2014 khi và chỉ khi \left\{{}\begin{matrix}x=\dfrac{1}{4}\\2\sqrt{x}-1=0\end{matrix}\right. \Leftrightarrow x=\dfrac{1}{4} .
Vậy GTNN = 2014