CHO TAM GIÁC ABC CÂN TẠI A ,ĐƯỜNG CAO AH .BIẾT AB BẰNG 5CM .BAC BẰNG 6CM
A. TÍNH ĐỘ DÀI CÁC ĐOẠN THẲNG BH VÀ AH
B. GỌI G LÀ TRỌNG TÂM CỦA TAM GIÁC ABC .CMR BA ĐIỂM A G H THẲNG HÀNG
C. CMR GÓC ABG BẰNG ACG
Cho tam giác ABC cân tại A, đường cao AH. Biết AB = 5cm, BC = 6cm.
a) Tính độ dài các đoạn thẳng BH, AH.
b) Gọi G là trọng tâm của tam giác ABC. Chứng minh rằng ba điểm A, G, H thẳng hàng.
c) Chứng minh: góc ABG = góc ACM.
Cho tam giác ABC cân tại A, đường cao Ah. Biết AB = 5cm, Bc = 6cm
a) Tính độ dài các đoạn thẳng BH, AH
b) Gọi G là trọng tâm tam giác ABC. Chứng minh rằng ba điểm A,G,H thẳng hàng
c) Chứng minh hai góc ABG và ACG bằng nhau
a, Xét tam giác ABH và tam giác ACH vuông tại H có: +, AB = AC ( vì tam giác ABC cân tại A)
+, AH chung
=> tam giác ABH = tam giác ACH (ch-cgv) => BH = CH = 6/2 = 3cm
b, Vì BH = CH => AH là đường trung tuyến của tam giác ABC => G nằm trên AH => A, G, H thẳng hàng
c, Vì tam giác ABH = tam giác ACH => góc BAH = góc CAH
Xét tam giác ABG và tam giác ACG có
AB = AC ( vì tam giác ABC cân tại A )
góc BAH = góc CAH ( chứng minh trên)
AG chung
=>tam giác ABG = tam giác ACG(c.g.c)
=> góc ABG = góc ACG
a)
Ta có tam giác ABC cân tại A ( gt )
Mà AH là đường cao
Nên AH cũng là đường trung tuyến của tam giác ABC => H là trung điểm BC
=> BH = CH = BC / 2 = 6 / 2 = 3 cm
Xét tam giác AHB vuông tại H
Ta có : AB2 = AH2 + BH2 ( Py-ta-go )
52 = AH2 + 32
=> AH2 = 16
=> AH = 4 cm
b)
Ta có G là trọng tâm của tam giác ABC ( gt )
=> AG là đường trung tuyến ứng với cạnh BC trong tam giác ABC
mà AH cũng là đường trung tuyến ứng với cạnh BC trong tam giác ABC ( chứng minh ở câu a )
=> A,G,H thẳng hàng
c)
gọi CG cắt AB tại E ; BG cắt BC tại F
vì G là trọng tâm => CE ; BF là đường trung tuyến
=> E là trung điềm AB ; F là trung điểm AC
Ta có EA = BA / 2 = 5 / 2 = 2,5 cm
AF = AC / 2 = 5 / 2 = 2,5 cm
Xét tam giác AEC và tam giác AFB
ta có : AE = AF = 2,5
góc BAC chung
AC = AB = 5
Nên 2 tam giác = nhau ( c-g-c )
=> góc ABG = góc ACG ( tương ứng )
a)tam giác ABC cân tại A có AH là đường cao
=>AH là đường trung tuyến=>BH=CH=BC/2=6/2=3
tam giác ACH vuông tại H
=>AC^2=AH^2+HC^2(theo định lí Py-ta-go)
=>5^2=AH^2+3^2
=>25=AH^2+9
=>AH^2=25-9
=>AH^2=16
=>AH=4
Vậy BH=3cm,AH=4cm
b)Vì G là trọng tâm của tam giác ABC
=>AG là đường trung tuyến ứng với cạnh BC
Mà AH cũng là đường trung tuyến ứng với cạnh BC(theo a)
=>A,G,H thẳng hàng
c)Xét tam giác vuông BAH và tam giác vuông CAH có:
AB=AC(gt)
AH chung
=> tam giác vuông BAH=tam giác vuông CAH (cạnh huyền-cạnh góc vuông)
=>góc BAH=góc CAH(2 góc tương ứng)
=> góc BAG= góc CAG
Xét tam giác BAG và tam giác CAG có:
AG chung
AB=AC(gt)
góc BAG và góc CAG(cmt)
=>tam giác BAG=tam giác CAG(c.g.c)
=>góc ABG và góc ACG(2 góc tương ứng)
mong mn cho ý kiến với ạ!
chúc mn học tốt:<
Cho tam giác ABC cân tại A. đường cao AH. Biết AB=5cm, BC=6cm.
a. Tính độ dài các đoạn thẳng BH, AH
b. Gọi G là trọng tâm của tam giác ABC. CMR: 3 điểm A,G.H thẳng hàng
c. CMR: Tam giác ABG=Tam giác ACG
Bài 4: Cho tam giác ABC cân tại A, đường cao AH. Biết AB = 5cm , BC = 6cm.
a) Tính độ dài các đoạn thẳng BH, AH
b) Gọi G là trọng tâm tam giác ABC. Chứng minh rằng ba điểm A,G,H thẳng hàng.
c) Chứng minh hai góc ABG và ACG bằng nhau.
Cho tam giác ABC cân tại A đường cao AH , BIẾT AB =5cm ,BC=6cm
a/ Tính độ dài các đoạn thẳng BH,AH
B/Gọi G là trọng tâm của tam giác ABC . Chứng minh ba điểm A,G,H thẳng hàng
c/ Chứng minh hai góc ABG và ACG bằng nhau
b: Ta có: ΔABC cân tại A
mà AH là đường cao ứng với cạnh huyền BC
nên AH là đường trung tuyến ứng với cạnh BC
mà AG là đường trung tuyến ứng với cạnh BC
và AG,AH có điểm chung là A
nên A,G,H thẳng hàng
Cho tam giác ABC cân tại A, đường cao AH. Biết AB = 5cm, BC = 6cm
a) Tính độ dài các đoạn thẳng BH,AH?
b) Gọi G là trọng tâm của tam giác ABC.Chứng minh rằng ba điểm A,G,H thẳng hàng ?
c) Chứng minh góc ABG = góc ACG
a) tam giác cân nên dg cao cx là dg trung tuyến
=>BH=3
áp dụng pitago vs tam giác AHB tìm ra dc AH=4
b) vì AH cx là trung tuyến =>G thuộc AH =>A,G,H thẳng hàng
c) xét tam giác ABG và tam giác ACG có
BAH=HAC( dg cao cx là dg trung tuyến
AG chung
AB=AC
=>...
Cho tam giác ABC cân tại A, đường cao AH. Biết AB=5cm, BC=6cm
a) Tính độ dài các đoạn thẳng BH, AH?
b) Gọi G là trọng tâm của tam giác ABC. C/minh 3 điểm A, G, H thẳng hàng.
c) C/minh góc ABG = góc ACG
Cho tam giác ABC cân tại A , đường cao AH, biết AB=5cm, BC=6cm.
a, Tính độ dài các đoạn thẳng BH,AH.
b, Gọi G là trọng tâm của tam giác ABC, chứng minh 3 điểm A,G,H thẳng hàng.
c, Chứng minh 2 góc ABG và ACG bằng nhau
a)Xét tam giác ABC cân tại A có AH là đường cao đồng thời là đường trung tuyến
=>BH=HC=\(\frac{BC}{2}=\frac{6}{2}=3\)
Áp dụng định lí Pitago cho tam giác ABH có:
\(AH^2+BH^2=AB^2\)
\(AH^2+3^2=5^2\)
\(AH^2+9=25\)
\(AH^2=16\)
=>AH=4
b) Vì G là trọng tâm của tam giác ABC
Mà AH là đường trung tuyến của tam giác ABC
=>G thuộc AH
=>A,G,H thẳng hàng
c)Xét tam giác ABG và tam giác ACG có:
AH chung
AB=AC(tam giác ABC cân)
BG=CG(G nằm trên trung trực của BC)
=> tam giác ABG=tam giác ACG(c-c-c)
=>góc ABG= góc ACG
Cho tam giác ABC cân tại A. vẽ đường cao AH
a, Cho AB=5cm, BC=6cm tính BH và AH
b, Gọi G là trọng tâm của tam giác ABC. CMR: 3 điểm A,G,H thẳng hàng
c, CMR: Góc ABG = Góc ACG
cho tam giác ABC cân tại A, đường cao AH , biết AB = 5cm, BC= 6cm
a) tính độ dài các đoạn thẳng BH, AH
b) Gọi G là trọng tâm của tam giác ABC, chứng minh rằng ba điểm A,G,H thẳng hàng ?
c) chứng minh : góc ABG= góc ACG ?
(help me!!!!!!)
a) \(\Delta ABC\) cân tại A nên AH là đường cao đồng thời cũng là trung tuyến.
\(\Rightarrow BH=\frac{1}{2}BC=\frac{1}{2}.6=3\left(cm\right)\)
Xét \(\Delta ABH\) vuông tại H có:
\(AH^2+BH^2=AB^2\) (Định lý Py-ta-go)
\(\Rightarrow AH^2+3^2=5^2\)
\(\Rightarrow AH^2=5^2-3^2=26-9=16\)
Mà \(AH>0\Rightarrow AH=4\left(cm\right)\)
Vậy \(BH=3\) \(cm;\) \(AH=4\) \(cm.\)
b) G là trọng tâm \(\Delta ABC\), nên G nằm trên đường trung tuyến của \(\Delta ABC\)
\(\Rightarrow G\in AH\)
\(\Rightarrow A,G,H\) thẳng hàng.
Vậy \(A,G,H\) thẳng hàng.
c) \(\Delta ABC\) cân tại A nên AH là đường cao đồng thời là phân giác góc BAC
\(\Rightarrow AG\) là phân giác góc BAC
\(\Rightarrow\) Góc BAG = góc CAG
Xét \(\Delta BAG\) và \(\Delta CAG\), ta có:
\(AB=AC\) ( \(\Delta ABC\) cân tại A)
Góc BAG = góc CAG (Chứng minh trên)
Cạnh AG chung
\(\Rightarrow\Delta BAG=\Delta CAG\left(c.g.c\right)\)
\(\Rightarrow\) Góc ABG = góc ACG (hai góc tương ứng)
Vậy góc ABG = góc ACG.