Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trung Nguyễn Adc
Xem chi tiết
Phạm Nguyễn Tất Đạt
16 tháng 5 2018 lúc 19:42

1)a)\(4x^2-xy+y^2\ge0\)

\(\Leftrightarrow\left(\dfrac{1}{4}x^2-xy+y^2\right)+\dfrac{15}{4}x^2\ge0\)

\(\Leftrightarrow\left(\dfrac{1}{2}x-y\right)^2+\dfrac{15}{4}x^2\ge0\)(luôn đúng)

b)\(a^2+b^2+2c^2\ge2c\left(a+b\right)\)

\(\Leftrightarrow a^2+b^2+2c^2-2ac-2bc\ge0\)

\(\Leftrightarrow\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2\ge0\)(luôn đúng)

c)Ta có:\(\left(a^2-b^2\right)\ge0\)

\(\Rightarrow a^4+b^4\ge2a^2b^2\)(1)

TT\(\Rightarrow c^4+d^4\ge2c^2d^2\)(2)

\(2a^2b^2+2c^2d^2\ge4abcd\left(3\right)\)

Từ (1)(2)(3)=>đpcm

Phan Phương Oanh
Xem chi tiết
Hoàng Trần Đình Tuấn
20 tháng 8 2015 lúc 20:36

mình giải câu 1 còn câu 2 từ từ mình suy nghĩ nhé bạn

Cho a/b=c/d suy ra ad=bc

ta có ad+ac=bc+ac

suy ra a/(a+b)=c/(c+d) nếu ko hiểu thì nhắn tin cho mình bước này nhé

=>đpcm

Nguyễn My
Xem chi tiết
Nii-chan
Xem chi tiết
Liễu Lê thị
Xem chi tiết
Tô Hà Thu
7 tháng 11 2021 lúc 9:23

\(\dfrac{2a-3b}{2a+3b}=\dfrac{2c-3d}{2c+3d}\Rightarrow\dfrac{2a-3d}{2c-3d}=\dfrac{2a+3b}{2c-3d}\)

\(\Rightarrow\dfrac{a}{b}=\dfrac{c}{d}\)

Nguyễn Thảo Trang
7 tháng 11 2021 lúc 9:25

vì a/b = c/d

theo dãy tỉ số bằng nhau ta có

a/b =c/d = a+c/b+d = a-c/b-d (đỗi vị trí)

⇒  2a-2b/2a+3b = 2c-3d/2c-3d

iulkj
Xem chi tiết
💥Hoàng Thị Diệu Thùy 💦
3 tháng 11 2019 lúc 19:56

a:

\(a^3+a^2c-abc+b^2c+b^3\)

\(=\left(a+b\right)\left(a^2-ab+b^2\right)+c\left(a^2-ab+b^2\right)\)

\(=\left(a^2-ab+b^2\right)\left(a+b+c\right)=0\)(vì a+b=c=0)

Khách vãng lai đã xóa
💥Hoàng Thị Diệu Thùy 💦
3 tháng 11 2019 lúc 20:00

câu b bn xem ở link này nha!

Giải toán trên mạng - Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath

Khách vãng lai đã xóa
Bùi Anh Tuấn
3 tháng 11 2019 lúc 20:03

\(a^3+a^2c-abc+b^2c+b^3\)

\(=\left(a^3+b^3\right)\left(a^2c-abc+b^2c\right)\)

\(=\left(a+b\right)\left(a^2-ab+b^2\right)+c\left(a^2-ab+b^2\right)\)

\(\Rightarrow\left(a+b+c\right)\left(a^2-ab+b^2\right)=0\)( vì a+b+c=0)

Vậy \(a^3+a^2c-abc+b^2c+b^3=0\left(đpcm\right)\)

\(b,A=bc\left(a+d\right)\left(b-c\right)-ac\left(b+d\right)\left(a-c\right)+ab\left(c+d\right)\left(a-b\right)\)

\(=bc\left(a+d\right)\left[\left(b-a\right)+\left(a-c\right)\right]-ac\left(a-c\right)\left(b+d\right)+ab\left(c+d\right)\left(a-b\right)\)

\(=-bc\left(a+d\right)\left(a-b\right)+bc\left(a+d\right)\left(a-c\right)-ac\left(a-c\right)\left(b+d\right)+ab\left(c+d\right)\left(a-b\right)\)

\(=b\left(a-b\right)\left[a\left(c+d\right)-c\left(a+d\right)\right]+c\left(a-c\right)\left[b\left(a+d\right)-a\left(b+d\right)\right]\)

\(=b\left(a-b\right)\cdot d\left(a-c\right)+c\left(a-c\right)\cdot d\left(b-a\right)\)

\(=d\left(a-b\right)\left(a-c\right)\left(b-c\right)\)

Khách vãng lai đã xóa
Cô bé mùa đông
Xem chi tiết
TM Vô Danh
23 tháng 7 2018 lúc 8:55

ta có \(a^3+b^3+a^2c+b^2c-abc=\left(a+b\right)\left(a^2-ab+b^2\right)+c\left(a^2-ab+b^2\right)=\left(a^2-ab+b^2\right)\left(a+b+c\right)\)

mà a+b+c=0

\(\Rightarrow a^3+b^3+a^2c+b^2c-abc=\left(a^2-ab+b^2\right).0=0\left(đpcm\right)\)

Le Thi Kim Anh
Xem chi tiết
Phùng Gia Linh
Xem chi tiết