1) chứng minh:
a) 4x² - xy +y² ≥ 0
b) a² + b² + 2c² ≥ 2c(a+b)
c) a⁴ + b⁴ + c⁴ + d⁴ ≥ 4abcd
1) chứng minh:
a) 4x² - xy +y² ≥ 0
b) a² + b² + 2c² ≥ 2c(a+b)
c) a⁴ + b⁴ + c⁴ + d⁴ ≥ 4abcd
1)a)\(4x^2-xy+y^2\ge0\)
\(\Leftrightarrow\left(\dfrac{1}{4}x^2-xy+y^2\right)+\dfrac{15}{4}x^2\ge0\)
\(\Leftrightarrow\left(\dfrac{1}{2}x-y\right)^2+\dfrac{15}{4}x^2\ge0\)(luôn đúng)
b)\(a^2+b^2+2c^2\ge2c\left(a+b\right)\)
\(\Leftrightarrow a^2+b^2+2c^2-2ac-2bc\ge0\)
\(\Leftrightarrow\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2\ge0\)(luôn đúng)
c)Ta có:\(\left(a^2-b^2\right)\ge0\)
\(\Rightarrow a^4+b^4\ge2a^2b^2\)(1)
TT\(\Rightarrow c^4+d^4\ge2c^2d^2\)(2)
\(2a^2b^2+2c^2d^2\ge4abcd\left(3\right)\)
Từ (1)(2)(3)=>đpcm
Cho a/b=c/d(b;d khác 0) chứng minh rằng
1.a/(a+b) = c /(c+d)
2,(a-b)/ b = (c-d) / d
3.(2a+b)/(2a-b) = (2c+d) / (2c-d)
mình giải câu 1 còn câu 2 từ từ mình suy nghĩ nhé bạn
Cho a/b=c/d suy ra ad=bc
ta có ad+ac=bc+ac
suy ra a/(a+b)=c/(c+d) nếu ko hiểu thì nhắn tin cho mình bước này nhé
=>đpcm
Cho a, b, c, x, y, z khác 0 thỏa mãn: x/a-2b+c = y/2a-b-c = c/4a+4b+c. Chứng minh rằng: a/x+2y+c = b/z-y-2c = c/4x-4y+z
Cho 2y + 2z - x/ a = 2z + 2x - y/ b = 2x + 2y - z/c với a,b,c khác 0; 2c +2b khác c; 2b + 2c khác a; 2c +2b khác b. Chứng minh : x/ 2b + 2c - a= y/ 2c + 2a - b= z/ 2a + 2b - c
. Cho a/b = c/d với a, b, c, d > 0. Chứng minh rằng \(\dfrac{2a-3b}{2a+3b}=\dfrac{2c-3d}{2c+3d}\)
\(\dfrac{2a-3b}{2a+3b}=\dfrac{2c-3d}{2c+3d}\Rightarrow\dfrac{2a-3d}{2c-3d}=\dfrac{2a+3b}{2c-3d}\)
\(\Rightarrow\dfrac{a}{b}=\dfrac{c}{d}\)
vì a/b = c/d
theo dãy tỉ số bằng nhau ta có
a/b =c/d = a+c/b+d = a-c/b-d (đỗi vị trí)
⇒ 2a-2b/2a+3b = 2c-3d/2c-3d
a, cho a+b+c=0 chứng minh \(a^3+a^2c-abc+b^2c+b^3=0\)
b, phân tích đa thức thành nhân tử
A= bc(a+d)(b-c)-ac(b+d)(a-c)+ab(c+d)(a-b)
a:
\(a^3+a^2c-abc+b^2c+b^3\)
\(=\left(a+b\right)\left(a^2-ab+b^2\right)+c\left(a^2-ab+b^2\right)\)
\(=\left(a^2-ab+b^2\right)\left(a+b+c\right)=0\)(vì a+b=c=0)
câu b bn xem ở link này nha!
Giải toán trên mạng - Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
\(a^3+a^2c-abc+b^2c+b^3\)
\(=\left(a^3+b^3\right)\left(a^2c-abc+b^2c\right)\)
\(=\left(a+b\right)\left(a^2-ab+b^2\right)+c\left(a^2-ab+b^2\right)\)
\(\Rightarrow\left(a+b+c\right)\left(a^2-ab+b^2\right)=0\)( vì a+b+c=0)
Vậy \(a^3+a^2c-abc+b^2c+b^3=0\left(đpcm\right)\)
\(b,A=bc\left(a+d\right)\left(b-c\right)-ac\left(b+d\right)\left(a-c\right)+ab\left(c+d\right)\left(a-b\right)\)
\(=bc\left(a+d\right)\left[\left(b-a\right)+\left(a-c\right)\right]-ac\left(a-c\right)\left(b+d\right)+ab\left(c+d\right)\left(a-b\right)\)
\(=-bc\left(a+d\right)\left(a-b\right)+bc\left(a+d\right)\left(a-c\right)-ac\left(a-c\right)\left(b+d\right)+ab\left(c+d\right)\left(a-b\right)\)
\(=b\left(a-b\right)\left[a\left(c+d\right)-c\left(a+d\right)\right]+c\left(a-c\right)\left[b\left(a+d\right)-a\left(b+d\right)\right]\)
\(=b\left(a-b\right)\cdot d\left(a-c\right)+c\left(a-c\right)\cdot d\left(b-a\right)\)
\(=d\left(a-b\right)\left(a-c\right)\left(b-c\right)\)
cho a+b+c=0, chứng minh a^3+b^3+a^2c+b^2c-abc=0
ta có \(a^3+b^3+a^2c+b^2c-abc=\left(a+b\right)\left(a^2-ab+b^2\right)+c\left(a^2-ab+b^2\right)=\left(a^2-ab+b^2\right)\left(a+b+c\right)\)
mà a+b+c=0
\(\Rightarrow a^3+b^3+a^2c+b^2c-abc=\left(a^2-ab+b^2\right).0=0\left(đpcm\right)\)
A, cmr |1+xy|>|x+y| voi -1<x<1 va -1<y<1
B,cho a^2+2b=b^2+2c=c^2+2a tính A=a^19+b^5+c^2015
C, tìm các số nguyêna ,b,c biết (a^2+b^2+c^2)+3<ab+3b+2c
D, cho 1/xy+1/zy+1/xz=0 tính N=x^2/xy+y^2/yz+z^2/xz
1)Cho a/a+b=c/c+d Chứng minh rằng: a/b= c/d 2)cho a/b=c/d, chứng minh rằng a)3a+2c/3b+2d=-5a+3c/-5b+3d b)a^2/b^2=2c^2-ac/2d^2-b-d NHANH NHA! MÌNH ĐANG CẦN GẤP!!!