a: \(4x^2-xy+y^2\)
\(=\left(2x\right)^2-2\cdot2x\cdot\dfrac{1}{4}y+\dfrac{1}{16}y^2+\dfrac{15}{16}y^2\)
\(=\left(2x-\dfrac{1}{4}y\right)^2+\dfrac{15}{16}y^2>=0\)
c: \(a^4+b^4+c^4+d^4\ge4\cdot\sqrt[4]{a^4\cdot b^4\cdot c^4\cdot d^4}=4abcd\)
a: \(4x^2-xy+y^2\)
\(=\left(2x\right)^2-2\cdot2x\cdot\dfrac{1}{4}y+\dfrac{1}{16}y^2+\dfrac{15}{16}y^2\)
\(=\left(2x-\dfrac{1}{4}y\right)^2+\dfrac{15}{16}y^2>=0\)
c: \(a^4+b^4+c^4+d^4\ge4\cdot\sqrt[4]{a^4\cdot b^4\cdot c^4\cdot d^4}=4abcd\)
Cho a,b,c >0 . Chứng minh rằng : \(\frac{a}{b+2c}+\frac{b}{c+2a}+\frac{c}{a+2b}+\frac{2a}{b+2a}+\frac{2b}{c+2b}+\frac{2c}{a+2c}\)≥3
cho 0<a,b,c<1. chứng minh: \(2a^3+2b^3+2c^3< 3+a^2b+b^2c+c^2a\)
cho 0<a,b,c<1. chứng minh \(2a^3+2b^3+2c^3< 3+a^2b+b^2c+c^2a\)
cho 0<a,b,c<1. chứng minh \(2a^3+2b^3+2c^3< 3+a^2b+b^2c+c^2a\)
cho 0<a,b,c<1. chứng minh \(2a^3+2b^3+2c^3< 3+a^2b+b^2c+c^2a\)
Cho a, b, c > 0. Chứng minh rằng: \(2\left(\frac{a}{b+2c}+\frac{b}{c+2a}+\frac{c}{a+2b}\right)\ge1+\frac{b}{b+2a}+\frac{c}{c+2b}+\frac{a}{a+2c}\)
a,b,c >0 và abc=1
Chứng minh: a^3+b^3+c^3>=a^2+b^2+c^2
a,b,c>0 và a^2+b^2+c^2=3
chứng minh 1/(2+a^2b) + 1/(2+b^2c) + 1/(2+c^2a) >=1
Cho a,b,c >0
Chứng minh : \(\frac{a}{b+2c}+\frac{b}{c+2a}+\frac{c}{a+2b}\)≥\(1+\frac{b}{b+2a}+\frac{c}{c+2b}+\frac{a}{a+2c}\)
( Nếu có sai đề thì làm ơn sửa lại đề nhé mấy bạn , tks )
Cho a, b, c > 0. Chứng minh \(\frac{a}{2a+b+c}+\frac{b}{a+2b+c}+\frac{c}{a+b+2c}\le\frac{3}{4}\)