Cho A=\(\dfrac{50}{111}\)+\(\dfrac{50}{112}\)+\(\dfrac{50}{113}+\dfrac{50}{114}\)
CMR : 1<A<2
Cho A=\(\frac{50}{111}+\frac{50}{112}+\frac{50}{113}+\frac{50}{114}\)
CMR 1<A<2
\(\frac{50}{111}>\frac{1}{4};\frac{50}{112}>\frac{1}{4};\frac{50}{113}>\frac{1}{4};\frac{50}{114}>\frac{1}{4}\)
\(A=\frac{50}{111}+\frac{50}{112}+\frac{50}{113}+\frac{50}{114}>\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}=1\)(1)
\(\frac{50}{111}< \frac{1}{2};\frac{50}{112}< \frac{1}{2};\frac{50}{113}< \frac{1}{2};\frac{50}{114}< \frac{1}{2}\)
\(\Rightarrow A=\frac{50}{111}+\frac{50}{112}+\frac{50}{113}+\frac{50}{114}< \frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=2\)(2)
từ (1) và (2) \(\Rightarrow1< A< 2\)
Cho A=50/111+50/112+50/113+50/114.Chứng tỏ 1<A<2
Ta có :
\(A=\dfrac{50}{111}+\dfrac{50}{112}+\dfrac{50}{113}+\dfrac{50}{114}\)
Ta thấy :
\(\dfrac{50}{111}>\dfrac{50}{200}\)
\(\dfrac{50}{112}>\dfrac{50}{200}\)
\(\dfrac{50}{113}>\dfrac{50}{200}\)
\(\dfrac{50}{114}>\dfrac{50}{200}\)
\(\Rightarrow A>\dfrac{50}{200}+\dfrac{50}{200}+\dfrac{50}{200}+\dfrac{50}{200}\)
\(\Rightarrow A>\dfrac{50}{200}.4=1\) \(\left(1\right)\)
Mặt khác :
\(\dfrac{50}{111}< \dfrac{50}{100}\)
\(\dfrac{50}{112}< \dfrac{50}{100}\)
\(\dfrac{50}{113}< \dfrac{50}{100}\)
\(\dfrac{50}{114}< \dfrac{50}{100}\)
\(\Rightarrow A< \dfrac{50}{100}+\dfrac{50}{100}+\dfrac{50}{100}+\dfrac{50}{100}\)
\(\Rightarrow A< \dfrac{50}{100}.4=2\) \(\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Rightarrow1< A< 2\rightarrowđpcm\)
Cho A=\(\frac{50}{111}+\frac{50}{112}+\frac{50}{113}+\frac{50}{114}\). Chứng tơ \(1< A< 2\)
Ta có :
\(\frac{50}{111}>\frac{50}{200}\)
\(\frac{50}{112}>\frac{50}{200}\)
\(\frac{50}{113}>\frac{50}{200}\)
\(\frac{50}{114}>\frac{50}{200}\)
\(\Rightarrow A>\frac{50}{200}+\frac{50}{200}+\frac{50}{200}+\frac{50}{200}\)hay \(A>\frac{50}{200}.4\left(1\right)\)
Mặt khác :
\(\frac{50}{111}< \frac{50}{100}\)
\(\frac{50}{112}< \frac{50}{100}\)
\(\frac{50}{113}< \frac{50}{100}\)
\(\frac{50}{114}< \frac{50}{100}\)
\(\Rightarrow A< \frac{50}{100}+\frac{50}{100}+\frac{50}{100}+\frac{50}{100}\)hay \(A< \frac{50}{100}.4\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\Rightarrow1< A< 2\left(đpcm\right)\)
Cho A = \(\frac{50}{111}\)+\(\frac{50}{112}\)+\(\frac{50}{113}\)+\(\frac{50}{114}\). Chứng tỏ 1<a<2
50/111 < 50/100
50/112 < 50/100
50/113 < 50/100
50/114 < 50/100
=> A < 200/100 => A < 2
50/111 > 50/200
50/112 > 50/200
50/113 > 50/200
50/114 > 50/200
=> A > 200/200 => A > 1
Vậy 1 < A < 2
AI THẤY OK ỦNG HỘ NHÉ
Cho A = \(\frac{50}{111}+\frac{50}{112}+\frac{50}{114}+\frac{50}{114}\)
Chứng tỏ 1<A<2
Cho A= \(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2^{100}-1}\). CMR 50<A<100
chuyển thành P/S thập phân
\(\dfrac{112}{125}\) ; \(\dfrac{5}{50}\)
Cho \(A=1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2^{100}-1}\).
CMR: 50 <A < 100.
Bài 6. Đúng ghi Đ sai ghi S vào ô trống:
a, \(\dfrac{7}{9}\)\(>\dfrac{7}{8}\) b, \(\dfrac{3}{5}\)\(< \dfrac{5}{7}\) c, \(\dfrac{111}{112}\)\(=\dfrac{112}{113}\)\(\) d, \(\dfrac{13}{9}\)\(=\dfrac{117}{81}\)
mình không có tìm thấy ô trống đâu
mong mọi người thông cảm
a) \(\dfrac{7}{9}>\dfrac{7}{8}\rightarrow Sai\)
b) \(\dfrac{3}{5}=\dfrac{21}{35}< \dfrac{5}{7}=\dfrac{25}{35}\rightarrowĐúng\)
c) \(\dfrac{111}{112}=\dfrac{112}{113}\left(\dfrac{111}{112}< \dfrac{112}{113}\right)\rightarrow Sai\)
\(\dfrac{13}{9}=\dfrac{91}{81}< \dfrac{117}{81}\rightarrow Sai\)