Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hằng
Xem chi tiết
Xyz OLM
12 tháng 9 2021 lúc 14:24

Ta có : \(\hept{\begin{cases}\left|x-\frac{3}{4}\right|\ge0\forall x\\\left|\frac{2}{5}-y\right|\ge0\forall y\\\left|x-y+z\right|\ge0\forall x;y;z\end{cases}}\Leftrightarrow\left|x-\frac{3}{4}\right|+\left|\frac{2}{5}-y\right|+\left|x-y+z\right|\ge0\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-\frac{3}{4}=0\\\frac{2}{5}-y=0\\x-y+z=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{3}{4}\\y=\frac{2}{5}\\z=-\frac{7}{20}\end{cases}}\)

Vậy x = 3/4 ; y = 2/5 ; z = -7/20 

Khách vãng lai đã xóa
Yen Nhi
12 tháng 9 2021 lúc 14:34

\(\left|x-\frac{3}{4}\right|+\left|\frac{2}{5}-y\right|+\left|x-y+z\right|=0\)

Ta có: \(\left|x-\frac{3}{4}\right|;\left|\frac{2}{5}-y\right|;\left|x-y+z\right|\ge0\Rightarrow\left|x-\frac{3}{4}\right|+\left|\frac{2}{5}-y\right|+\left|x-y+z\right|\ge0\)

Mà \(\left|x-\frac{3}{4}\right|+\left|\frac{2}{5}-y\right|+\left|x-y+z\right|=0\)

\(\Rightarrow\hept{\begin{cases}x-\frac{3}{4}=0\\\frac{2}{5}-y=0\\x-y+z=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{3}{4}\\y=\frac{2}{5}\\\frac{3}{4}-\frac{2}{5}+z=0\Rightarrow z=\frac{-7}{20}\end{cases}}\)

Khách vãng lai đã xóa
Lê Đoàn Linh Chi
Xem chi tiết
Cả Út
14 tháng 7 2019 lúc 10:05

\(\left|3x-1\right|=\left|2x+5\right|\)

\(\Rightarrow\orbr{\begin{cases}3x-1=2x+5\\3x-1+2x+5=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}3x-2x=5+1\\5x+4=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=6\\x=-\frac{4}{5}\end{cases}}\)

Kiệt Nguyễn
14 tháng 7 2019 lúc 10:08

Ta có: \(\hept{\begin{cases}\left(x-1\right)^2\ge0\\\left|3y-1\right|\ge0\\\left|z+2\right|\ge0\end{cases}}\Rightarrow\left(x-1\right)^2+\left|3y-1\right|+\left|z+2\right|\ge0\)

Dấu "="\(\Leftrightarrow\hept{\begin{cases}\left(x-1\right)^2=0\\\left|3y-1\right|=0\\\left|z+2\right|=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x-1=0\\3y-1=0\\x+2=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=1\\y=\frac{1}{3}\\z=-2\end{cases}}\)

Vậy x = 1, \(y=\frac{1}{3}\),z = -2

mai
Xem chi tiết
Kuro Kazuya
24 tháng 3 2017 lúc 23:59

\(P=\dfrac{x}{y+z}+\dfrac{y}{x+z}+\dfrac{z}{x+y}\)

\(P=\dfrac{x^2}{xy+xz}+\dfrac{y^2}{xy+yz}+\dfrac{z^2}{xz+yz}\)

Áp dụng bất đẳng thức Cauchy - Schwarz dạng phân thức

\(\Rightarrow\dfrac{x^2}{xy+xz}+\dfrac{y^2}{xy+yz}+\dfrac{z^2}{xz+yz}\ge\dfrac{\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)}\) ( 1 )

Theo hệ quả của bất đẳng thức Cauchy

\(\Rightarrow\left(x+y+z\right)^2\ge3\left(xy+yz+xz\right)\)

\(\Rightarrow\dfrac{\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)}\ge\dfrac{3\left(xy+yz+xz\right)}{2\left(xy+yz+xz\right)}=\dfrac{3}{2}\) ( 2 )

Từ ( 1 ) và ( 2 )

\(\Rightarrow\dfrac{x^2}{xy+xz}+\dfrac{y^2}{xy+zy}+\dfrac{z^2}{xz+yz}\ge\dfrac{3}{2}\)

\(\Leftrightarrow\dfrac{x}{y+z}+\dfrac{y}{x+z}+\dfrac{z}{x+y}\ge\dfrac{3}{2}\)

\(\Leftrightarrow P\ge\dfrac{3}{2}\)

Vậy \(P_{min}=\dfrac{3}{2}\)

Dấu " = " xảy ra khi \(x=y=z\)

Lightning Farron
24 tháng 3 2017 lúc 19:04

bài này \(P\ge\dfrac{3}{2}\) là BĐT Nesbitt có vô vàn cách c/m BĐT này từ cách cấp 1-> cấp 3 bn cần thì IB

còn đây là cách c/m tổng quát có thể áp dụng cho mọi bài cả bài này Here

PHƯƠNG ANH Mai
Xem chi tiết
Lăng Phan Nguyễn
Xem chi tiết
ngonhuminh
24 tháng 1 2017 lúc 20:49

f)

\(A=\sqrt{\frac{\left(x+1\right)}{x-3}}=\sqrt{1+\frac{4}{x-3}}\)

x-3={-4)=> x=-1

Song Joong Ki
Xem chi tiết
nguyễn thảo hân
Xem chi tiết
Công chúa Sakura
21 tháng 9 2016 lúc 10:03

a) 

Ta có : \(\left|x+\frac{19}{5}\right|\ge0\) với mọi x

           \(\left|y+\frac{1890}{1975}\right|\ge0\) với mọi x

            \(\left|z-2014\right|\ge0\) với mọi x

\(\Rightarrow\left|x+\frac{19}{5}\right|+\left|y+\frac{1890}{1975}\right|+\left|z-2014\right|\ge0\)

Mà \(\left|x+\frac{19}{5}\right|+\left|y+\frac{1890}{1975}\right|+\left|z-2014\right|=0\)

\(\Rightarrow\hept{\begin{cases}\left|x+\frac{19}{5}\right|=0\\\left|y+\frac{1890}{1975}\right|=0\\\left|z-2014\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x+\frac{19}{5}=0\\y+\frac{1890}{1975}=0\\z-2014=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{19}{5}\\y=-\frac{1890}{1975}\\z=2014\end{cases}}\)

 b) Cx tương tự câu trên thôi bạn

Ta có : \(\left|x-\frac{9}{2}\right|\ge0\) với mọi x

            \(\left|y+\frac{4}{3}\right|\ge0\) với mọi x

            \(\left|z+\frac{7}{2}\right|\ge0\) với mọi x

\(\Rightarrow\left|x-\frac{9}{2}\right|+\left|y+\frac{4}{3}\right|+\left|z+\frac{7}{2}\right|\ge0\) với mọi x

Mà \(\left|x-\frac{9}{2}\right|+\left|y+\frac{4}{3}\right|+\left|z+\frac{7}{2}\right|\le0\)

\(\Rightarrow\hept{\begin{cases}\left|x-\frac{9}{2}\right|=0\\\left|y+\frac{4}{3}\right|=0\\\left|z+\frac{7}{2}\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x-\frac{9}{2}=0\\y+\frac{4}{3}=0\\z+\frac{7}{2}=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{9}{2}\\y=-\frac{4}{3}\\z=-\frac{7}{2}\end{cases}}\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 7 2018 lúc 5:43

a ∈ ( 0 ; π 2 ] ,  c o t α 2 ,  c o s   α 2 sin 2 α + sin   α - 3 = 0 , 2 πa 3 ; 4 πa 2 B S C ^ = 30 ° ,   A S B ^ = 60 ° 60 ° a 42 7 , a 3 3 , u ⇀ = m a ⇀ - 3 b ⇀ , α

Bơ Ơ
Xem chi tiết