giai phuong trinh sau :
Cho cac so khong am x,y thoa man : x3 + y3 = 2 . CMR :
x2 + y2 ≤ 2
cmr khong co cac so x,y,x thoa man moi dang thuc sau: A = 2x^2 + y^2 - 2xy + x + 2 = 0
\(A=2x^2+y^2-2xy+x+2\)
\(A=\left(x^2-2xy+y^2\right)+\left[x^2+2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right]+\frac{7}{4}\)
\(A=\left(x-y\right)^2+\left(x+\frac{1}{2}\right)^2+\frac{7}{4}\)
Ta có: \(\hept{\begin{cases}\left(x-y\right)^2\ge0\forall x;y\\\left(x+\frac{1}{2}\right)^2\ge0\forall x\end{cases}}\Rightarrow\left(x-y\right)^2+\left(x+\frac{1}{2}\right)^2+\frac{7}{4}=A\ge\frac{7}{4}>0\forall x;y\)
Vậy không có các số tự nhiên thỏa mã đẳng thức \(A=2x^2+y^2-2xy+x+2=0\)
giai ho minh voi minh can gap lam ai tra loi minh tich cho
1 tim cac so nguyen x thoa man 1 trong cac dieu kien sau
a) 2x+1 la scp
b) 4x=1 la scp
c)8x+1 la scp
2 tim nguyen tu nhien cua phuong trinh x^2-y^2=y+1
cho phuong trinh \(x^2-\left(m+2\right)x+2m=0\left(1\right)\)
a, giai phuong trinh voi m=-1
b, tim m de phuong trinh (1) co 2 nghiem x1;x2 thoa man
\(\left(x_1+x_2\right)^2-x_1.x_2< 5\)
a. vs m=-1 ,thay vào pt(1) ,ta đc :
x^2 -(-1+2)x +2.(-1) =0
<=>x^2 -x-2 =0
Có : đenta = (-1)^2 -4.(-2) =9 >0
=> căn đenta =căn 9 =3
=> X1 =2 ; X2=-1
Vậy pt (1) có tập nghiệm S={-1;2}
1) Cho phuong trinh: \(\dfrac{1}{2}\)cos4x + \(\dfrac{4tanx}{1+tan^2x}\) = m. De phuong trinh vo nghiem, cac gia tri cua tham so m phai thoa man dieu kien
ĐKXĐ: \(cosx\ne0\Rightarrow x\ne\dfrac{\pi}{2}+k\pi\)
\(\dfrac{1}{2}cos4x+\dfrac{4sinx}{cosx}.cos^2x=m\)
\(\Rightarrow\dfrac{1}{2}cos4x+2sin2x=m\)
\(\Rightarrow\dfrac{1}{2}\left(1-2sin^22x\right)+2sin2x=m\)
\(\Rightarrow-sin^22x+2sin2x+\dfrac{1}{2}=m\)
Đặt \(sin2x=t\in\left[-1;1\right]\Rightarrow-t^2+2t+\dfrac{1}{2}=m\)
Xét hàm \(f\left(t\right)=-t^2+2t+\dfrac{1}{2}\) trên \(\left[-1;1\right]\)
\(-\dfrac{b}{2a}=1\) ; \(f\left(-1\right)=-\dfrac{5}{2}\) ; \(f\left(1\right)=\dfrac{3}{2}\) \(\Rightarrow-\dfrac{5}{2}\le f\left(t\right)\le\dfrac{3}{2}\)
\(\Rightarrow\) Phương trình đã cho vô nghiệm khi \(\left[{}\begin{matrix}m< -\dfrac{5}{2}\\m>\dfrac{3}{2}\end{matrix}\right.\)
tim cac so tu nhien thoa man phuong trinh
\(x^2+2y^2=2377\)
\(x^2\) có chữ số tận cùng có thể là : 0;1;4;6;9
\(2y^2\)có chữ số tận cùng có thể là : 0 ;2;8
Vậy \(x^2+2y^2\)có chữ số tận cùng 7 => \(x^2\)có chữ số tận cùng là 9 và \(2y^2\)có chữ số tận cùng là 8 nên y2 có tận cùng là 4
=> y có tận cùng là 2 hoặc 8
\(2y^2\)< 2377 => \(y\)< 35
=> y \(\in\){2;8;12;18;22;28;32}
Thay y lần lượt các giá trị trên vào đề bài để tìm x .
Bạn làm tiếp nha.
cho day so Un duoc xac dinh boi U1=2,U2=1,Un=2=nUn+1-3Un+n2-2.tinh U15 va tinh tong cua 16 so hang dau tien cua day
tim cac cap so nguyen thoa man phuong trinh sau:
a)2x+y=0
b)6x-15y=4
tim cac cap so nguyen thoa man cua phuong trinh sau:
a)2x+y=0
b)6x-15y=4
a) Giai phuong trinh sau: \(\sqrt{x}-\sqrt{x+1}-\sqrt{x+4}+\sqrt{x+9}=0\)
b) Tim so tu nhien x, y thoa man: x( 1 + x +x2) = 4y( y - 1)
Ta có:\(x\left(x^2+x+1\right)=4y\left(y-1\right)\) (*)
\(\Leftrightarrow x^3+x^2+x+1=4y^2-4y+1\)
\(\Leftrightarrow\left(x^2+1\right)\left(x+1\right)=\left(2y-1\right)^2\) \(\left(1\right)\)
Gọi \(d\inƯC\left(x+1;x^2+1\right)\)với \(d\in Z\)
\(\Rightarrow\hept{\begin{cases}x+1⋮d\\x^2+1⋮d\end{cases}\Rightarrow x^2+1-x\left(x+1\right)⋮d}\)
\(\Rightarrow1-x⋮d\)
\(\Rightarrow1-x+x+1⋮d\)
\(\Rightarrow2⋮d\)
\(\Rightarrow d\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
Mà \(\left(2y-1\right)^2\)là số chính phương lẻ nên x+1 và x2+1 cũng là số lẻ
\(\Rightarrow d=\pm1\)
\(\Rightarrow x+1\)và \(x^2+1\)nguyên tố cùng nhau
Do đó để phương trình có nghiệm thì x+1 và x2+1 cũng là số chình phương
Giả sử: + \(x^2+1=m^2\)
\(\Rightarrow m^2-x^2=1\)
\(\Rightarrow x=0\)(bạn tự tính)
+\(x+1=n^2\)
\(\Rightarrow x=0\)(bạn tự tính)
Thay x=0 vào phương trình (*)=> y=-1;0
Vậy.......
CHO MINH HOI VS
x^2 - 2x -3m^2 = 0 voi m la tham so
1) giai phuong trinh khi m=1
2) tim tat ca gia tri cua m de phuong trinh co 2no x1,x2 khac 0 thoa dieu kien x1/x2 - x2/x1 = 8/3
Ta có : x2 - 2x - 3m2 = 0
Tại m = 1 thì pt trở thành :
x2 - 2x - 3.12 = 0
<=> x2 - 2x - 3 = 0
<=> x2 - 3x + x - 3= 0
<=> x(x - 3) + (x - 3) = 0
<=> (x - 3)(x + 1) = 0
<=> \(\orbr{\begin{cases}x-3=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-1\end{cases}}}\)