Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trà Nhật Đông
Xem chi tiết
Lam Vu
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 7 2023 lúc 14:17

loading...

Lam Vu
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 7 2023 lúc 13:48

a: góc AMO+góc ANO=180 độ

=>AMON nội tiếp

b: Xét ΔAKM và ΔAMI có

góc AMK=góc AIM

góc MAK chung

=>ΔAKM đồng dạng với ΔAMI

=>AK/AM=AM/AI

=>AM^2=AI*AK

Xét ΔABM và ΔAMC có

góc AMB=góc ACM

góc BAM chung

=>ΔABM đồng dạng với ΔAMC

=>AB/AM=AM/AC

=>AM^2=AB*AC=AK*AI

Nguyễn Hoa
Xem chi tiết
Vanthingocanh
27 tháng 12 2019 lúc 17:36

a) Ta có AB và AC là tiếp tuyến tại A và B của (O)

=> AB⊥OB và AC⊥OC

Xét ΔAOB và ΔAOC có 

       OB=OC(=R)

Góc ABO=Góc ACO=90

       OA chung

=> ΔAOB=ΔAOC

=> AB=AC

=> A∈trung trực của BC

Có OB=OC(=R)

=>O∈trung trực của BC

=> OA là đường trung trực của BC 

Mà H là trung điểm của BC

=>A;H;O thẳng hàng

Xét ΔABO vuông tại B

=>A;B:O cùng thuộc đường tròn đường kính OA

Xét ΔACO vuông tại C

=>A;C;O cùng thuộc đuường tròn đường kính OA

=>A;B;C;O cùng thuộc đường tròn đường kính OA

b) Xét (O) có BD là đường kính

=>ΔBCD vuông tại C

=> CD⊥BC

Mà OA⊥BC

=>OA//CD

=> Góc AOC=Góc OCD

Xét ΔOCD có OC=OD

=> ΔOCD cân tại O

=> Góc OCD=Góc ODC

=> Góc ODC=Góc AOC

Xét ΔAOC và ΔCDK có 

Góc AOC=Góc CDK

Góc ACO=Góc CKD=90

=>ΔAOC∞ΔCDK

=>AOCDAOCD= ACCKACCK 

=>AC.CD=CK.OA

d) Xét ΔOCK vuông tại K

=> ΔOCK nội tiếp đường tròn đường kính OC

Xét ΔOHC vuông tại H

=> ΔOHC nội tiếp đường tròn đươngf kính OC

=> Tứ giác OKCH nội tiếp đường tròn đường kính OC

=> Góc CHK=Góc COD

Có góc BOA=Góc BCK( cùng phụ góc CBD)

Góc CHI+góc BCK=Góc BOA+ góc BAO

=>Góc CHI=Góc BAO

Mà Góc BAO=Góc CBD( cùng phụ góc ABC)

=> Góc CHI=Góc CBD

=> HI//BD

Xét ΔBCD có HI//BD và H là trung điểm của BC

=> HI là đường trung bình của ΔBCD

=> I là trung điểm của CK

Khách vãng lai đã xóa
Lâm Oanh
29 tháng 4 2020 lúc 9:28

hay ghê

Khách vãng lai đã xóa
Nguyễn Hoàng Bảo Nhi
29 tháng 4 2020 lúc 10:19

A M N E C D K O

a.Vì AM,AN là tiếp tuyến của (O)

\(\Rightarrow AM=AN\)

Mà \(OM=ON\Rightarrow M,N\) đối xứng nhau qua OA

\(\Rightarrow OK\perp MN\)

b.Vì AM là tiếp tuyến của (O)

\(\Rightarrow ON\perp AN\Rightarrow AN^2=OA^2-ON^2=64\Rightarrow AN=8\)

Mà \(OA\perp MN\Rightarrow KN\perp OA\)

\(\Rightarrow KN.OA=AN.ON=\left(2S_{ANO}\right)\Rightarrow KN=\frac{24}{5}\)

\(\Rightarrow MN=2KN=\frac{48}{5}\)

c . Vì \(OD\perp OM\Rightarrow OD//AE\)

Tương tự 

\(AD//OE\Rightarrow\)◊AEOD là hình bình hành

Ta chứng minh được AE=AD => ◊AEOD là hình thoi

\(\Rightarrow ED\perp AO=C\) là trung điểm mỗi đường 

Để DE là tiếp tuyến của (O) \(\Rightarrow OC=R\Rightarrow OA=2R\)

Khách vãng lai đã xóa
RINBUONGTHA
Xem chi tiết

Xét (O) có

AM,AN là các tiếp tuyến

Do đó: AM=AN

=>A nằm trên đường trung trực của MN(1)

Ta có: OM=ON

=>O nằm trên đường trung trực của MN(2)

Từ (1) và (2) suy ra OA là đường trung trực của MN

=>OA\(\perp\)MN tại I

Xét ΔOHA vuông tại H và ΔOIC vuông tại I có

\(\widehat{HOA}\) chung

Do đó: ΔOHA~ΔOIC

=>\(\dfrac{OH}{OI}=\dfrac{OA}{OC}\)

=>\(OH\cdot OC=OA\cdot OI\)

mà \(OA\cdot OI=OM^2=OB^2\)

nên \(OB^2=OH\cdot OC\)

=>\(\dfrac{OB}{OH}=\dfrac{OC}{OB}\)

Xét ΔOBC và ΔOHB có

\(\dfrac{OB}{OH}=\dfrac{OC}{OB}\)

\(\widehat{BOC}\) chung

Do đó: ΔOBC~ΔOHB

=>\(\widehat{OBC}=\widehat{OHB}\)

mà \(\widehat{OHB}=90^0\)

nên \(\widehat{OBC}=90^0\)

=>CB là tiếp tuyến của (O)

Ly Đặng Khánh
Xem chi tiết
Nameless
Xem chi tiết
ttl169
Xem chi tiết
Xuan Mai Do Thi
Xem chi tiết
ntkhai0708
22 tháng 3 2021 lúc 17:53

Xét $(O)$ có: $BC$ là dây cung
$I$ là trung điểm $BC$

$⇒OI ⊥BC$ (tính chất)

Xét $(O)$ có: $AM;AN$ là các tiếp tuyến của đường tròn

$⇒AM⊥OM;AN⊥ON;AM=AN$

Xét tứ giác $AMON$ có:

$\widehat{AMO}=\widehat{ANO}=90^o$

$⇒\widehat{AMO}+\widehat{ANO}=180^o$

$⇒$ Tứ giác $AMON$ nội tiếp (tổng 2 góc đối $=180^o$)

$⇒$ 4 điểm $A;M;O;N$ thuộc 1 đường tròn(1)

Lại có: $\widehat{AIO}=\widehat{ANO}=90^o$

$⇒\widehat{AIO}+\widehat{ANO}=180^o$

$⇒$ Tứ giác $AION$ nội tiếp (Tổng 2 góc đối $=180^o$)

hay 4 điểm $A;I;O;N$ thuộc 1 đường tròn (2)

Từ $(1)(2)⇒$ 5 điểm $A;I;O;M;N$ thuộc 1 đường tròn (đpcm)

b, $K$ sẽ là giao điểm của $MN$ và $AC$

5 điểm $A;I;O;M;N$ thuộc 1 đường tròn

$⇒$ Tứ giác $AMIN$ nội tiếp

$⇒\widehat{AIM}=\widehat{ANM}$ (các góc nội tiếp cùng chắn cung $AM$)

Ta có: $AM=AN⇒\triangle AMN$ cân tại $A$

$⇒\widehat{AMN}=\widehat{ANM}$

$⇒\widehat{AIM}=\widehat{AMN}$

hay $\widehat{AIM}=\widehat{AMK}$

Xét $\triangle AIM$ và $\triangle AMK$ có:

$\widehat{AIM}=\widehat{AMK}$

$\widehat{A}$ chung

$⇒\triangle AIM \backsim \triangle AMK(c.g.c)$

$⇒\dfrac{AI}{AM}=\widehat{AM}{AK}$

$ ⇒AK.AI=AM^2(3)$

Xét $(O)$ có: $\widehat{AMB}=\widehat{ACM}$ (góc tạo bởi tia tiếp tuyến và dây cung và góc nội tiếp cùng chắn cung $MB$)

Xét $\triangle AMB$ và $\triangle ACM$ có:

$\widehat{AMB}=\widehat{ACM}$ 

$\widehat{A}$ chung

$⇒\triangle AMB \backsim \triangle ACM(g.g)$

$⇒\dfrac{AM}{AC}=\dfrac{AB}{AM}$

Hay $AB.AC=AM^2(4)$ 

Từ $(3)(4)⇒AK.AI=AB.AC(đpcm)$

undefined

Xuan Mai Do Thi
22 tháng 3 2021 lúc 15:38

GIÚP MÌNH VỚI