Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Bích Thuỳ
Xem chi tiết
Phạm Trần Phát
Xem chi tiết
callme_lee06
Xem chi tiết
Thiên Lạc
Xem chi tiết
Thu Thao
20 tháng 4 2021 lúc 17:19

PT 2 

\(\Leftrightarrow\dfrac{3}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}+\dfrac{2x}{\left(x-2\right)\left(x-3\right)}-\dfrac{1}{\left(x-1\right)\left(x-2\right)}=0\) ( \(x\ne1;x\ne2;x\ne3\))

\(\Leftrightarrow\dfrac{3+2x^2-2x-x+3}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}=0\)

\(\Rightarrow2x^2-3x+6=0\)

=> PT vô nghiệm.

 

Kinder
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 7 2021 lúc 17:34

ĐKXĐ: \(x>\dfrac{1}{5}\)

\(1-3x^2< \left(x+2\right)\sqrt[]{5x-1}+5x-1\)

\(\Leftrightarrow3x^2+5x-2+\left(x+2\right)\sqrt{5x-1}\ge0\)

\(\Leftrightarrow\left(x+2\right)\left(3x-1\right)+\left(x+2\right)\sqrt{5x-1}>0\)

\(\Leftrightarrow\left(x+2\right)\left(3x-1+\sqrt{5x-1}\right)>0\)

\(\Leftrightarrow3x-1+\sqrt{5x-1}>0\)

\(\Leftrightarrow\sqrt{5x-1}>1-3x\)

TH1: \(\left\{{}\begin{matrix}x\ge\dfrac{1}{5}\\1-3x< 0\end{matrix}\right.\) \(\Leftrightarrow x>\dfrac{1}{3}\)

TH2: \(\left\{{}\begin{matrix}x\le\dfrac{1}{3}\\5x-1>9x^2-6x+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{1}{3}\\9x^2-11x+2< 0\end{matrix}\right.\) \(\Rightarrow\dfrac{2}{9}< x\le\dfrac{1}{3}\)

Kết luận: \(x>\dfrac{2}{9}\)

Thiên Yết
Xem chi tiết
Nguyễn Thị Bình Yên
Xem chi tiết
Nguyễn Thị Bình Yên
18 tháng 1 2019 lúc 12:54

@Nguyễn Huy Thắng@Mysterious Person@bảo nam trần@Lightning Farron@Thiên Thảo@Sky SơnTùng

Quỳnh Anh Đỗ Vũ
Xem chi tiết
nguyễn thị hương giang
15 tháng 2 2022 lúc 23:52

\(Đk:\) \(x\ne1,x\ne2,x\ne3\)

\(\Rightarrow\dfrac{x+4}{\left(x-2\right)\left(x-1\right)}+\dfrac{x+1}{\left(x-3\right)\left(x-1\right)}=\dfrac{2x+5}{\left(x-3\right)\left(x-1\right)}\)

\(\Rightarrow\dfrac{\left(x+4\right)\cdot\left(x-3\right)+\left(x+1\right)\left(x-2\right)}{\left(x-2\right)\left(x-1\right)\left(x-3\right)}=\dfrac{\left(2x+5\right)\left(x-2\right)}{\left(x-3\right)\left(x-1\right)\left(x-2\right)}\)

\(\Rightarrow x^2-3x+4x-12+x^2-2x+x-2=2x^2-4x+5x-10\)

\(\Rightarrow0x-14=x-10\)

\(\Rightarrow x=-4\left(tmđk\right)\)

Nguyễn Thanh Bình
Xem chi tiết
Phía sau một cô gái
2 tháng 3 2023 lúc 9:40

\(\left(3x+1\right)\sqrt{2x^2-1}=5x^2+\dfrac{3}{2}x-3\)

\(\Leftrightarrow2\left(3x+1\right)\sqrt{2x^2-1}=10x^2+3x-6\)

Đặt \(t=\sqrt{2x^2-1}\left(t\ge0\right)\)  \(\left(1\right)\) nên ta có phương trình:

\(4t^2-2\left(3x+1\right)t+2x^2+3x-2=0\)

Ta có: \(\Delta'=\left(3x+1\right)^2-4\left(2x^2+3x-2\right)=\left(x-3\right)^2\)

⇒ Phương trình có hai nghiệm phân biệt

\(t_1=\dfrac{2x-1}{2}\)

\(t_2=\dfrac{x+2}{2}\)

Thay lần lượt các giá trị của t vào (1) nên: \(x\in\left\{\dfrac{-1+\sqrt{6}}{2};\dfrac{2+\sqrt{60}}{7}\right\}\)

Phạm Minh Đức
Xem chi tiết
Nguyễn Hoàng Minh
10 tháng 12 2021 lúc 7:05

\(a,PT\Leftrightarrow x^2-3x+2+x^2-x\sqrt{3x-2}=0\left(x\ge\dfrac{2}{3}\right)\\ \Leftrightarrow\left(x^2-3x+2\right)+\dfrac{x\left(x^2-3x+2\right)}{x+\sqrt{3x-2}}=0\\ \Leftrightarrow\left(x^2-3x+2\right)\left(1+\dfrac{x}{x+\sqrt{3x-2}}\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-2\right)\left(1+\dfrac{x}{x+\sqrt{3x-2}}\right)=0\)

Vì \(x\ge\dfrac{2}{3}>0\Leftrightarrow1+\dfrac{x}{x+\sqrt{3x-2}}>0\)

Do đó \(x\in\left\{1;2\right\}\)

Nguyễn Hoàng Minh
10 tháng 12 2021 lúc 7:07

\(b,ĐK:0\le x\le4\\ PT\Leftrightarrow x+2\sqrt{x}+1=6\sqrt{x}-3-\sqrt{4-x}\\ \Leftrightarrow x-4\sqrt{x}+4=-\sqrt{4-x}\\ \Leftrightarrow\left(\sqrt{x}-2\right)^2=-\sqrt{4-x}\)

Vì \(VT\ge0\ge VP\Leftrightarrow VT=VP=0\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}-2=0\\\sqrt{4-x}=0\end{matrix}\right.\Leftrightarrow x=4\left(tm\right)\)

Vậy PT có nghiệm \(x=4\)