cho f(x)=\(2x^2-x\) và g(x)=\(-mx^2+2mx+1\)
tìm m biết f(5)=f(-3)
help me, thanks!!!
Cho các đa thức f ( x) = 2x2 - x và g ( x) = mx2 + 2mx + 1
1, Tìm nghiệm của đa thức f ( x)
2, Tìm m, biết rằng f ( x) + g ( x) nhận x = 2 là nghiệm
Cho các đa thức: f(x) = x ^ 2 - (m - 1) * x + 3m - 2 g(x) = x ^ 2 - 2(m + 1)x - 5m + 1 h(x) = - 2x ^ 2 + mx - 7m + 3 Tìm m, biết: 1. Đa thức f có nghiệm là –1 2. Đa thức g có nghiệm là 2 3. Đa thức h có nghiệm là –1 4. f(1) = g(2) 5. g(1) = h(- 2)
1: f(-1)=0
=>1+m-1+3m-2=0 và
=>4m-2=0
=>m=1/2
2: g(2)=0
=>2^2-4(m+1)-5m+1=0
=>4-5m+1-4m-4=0
=>-9m+1=0
=>m=1/9
4: f(1)=g(2)
=>1-(m-1)+3m-2=4-4(m+1)-5m+1
=>1-m+1+3m-2=4-4m-4-5m+1
=>2m-2=-9m+1
=>11m=3
=>m=3/11
3:
H(-1)=0
=>-2-m-7m+3=0
=>-8m=-1
=>m=1/8
5: g(1)=h(-2)
=>1-2(m+1)-5m+1=-8-2m-7m+3
=>-5m+2-2m-2=-9m-5
=>-7m=-9m-5
=>2m=-5
=>m=-5/2
Cho đa thức f(x)=\(2x^2-x\) va \(g\left(x\right)=mx^2+2mx+1\)
a, Tìm nghiệm của đa thức f(x)
b, Tìm m biết f(x) + g(x) nhận được x = 2 là nghiệm
a) Đặt f(x) = 0, ta có:
f(x) = 2x2 - x = 0
=> x(2x - 1) = 0
\(\Rightarrow\left[{}\begin{matrix}x=0\\2x-1=0\Rightarrow2x=1\Rightarrow x=\dfrac{1}{2}\end{matrix}\right.\)
Vậy nghiệm của f(x) là x = 0 hoặc \(x=\dfrac{1}{2}\)
b) f(x) + g(x) = (2x2 - x) + (mx2 + 2mx + 1)
= 2x2 - x + mx2 + 2mx + 1
= x(2x - 1) + x(mx + 2m) + 1
Thay x = 2 vào đa thức f(x) + g(x), ta có:
f(2) + g(2) = 2(2 . 2 - 1) + 2(2m + 2m) + 1
= 2 . 5 + 2 . 4m + 1
= 10 + 8m + 1
= 11 + 8m
Đặt f(2) + g(2) = 0, ta có:
f(2) + g(2) = 11 + 8m = 0
=> 8m = -11
\(\Rightarrow m=-\dfrac{11}{8}\)
Vậy \(m=-\dfrac{11}{8}\)
chỗ thay x = 2 ở câu b mik bị lộn, giờ mik k có thời gian sửa, bn tự sửa nhé!
1) Cho f(x)=9-x^5+4x-2x^3+x^2-7x^4
g(x)=x^5-9+2x^2+7x^4+2x^3-3x
A) sắp xếp các đa thức sau theo lũythừa giảm dần của biến
b) tính h(x)=f(x)+g(x)
C) tìm nghiệm của (x)
2)cho đa thức M(x)=a+b×(x-1)+c×(x-1)×(x-2). Tìm a;b;c biết M(1)=1; M(2)=3 và M(0)=5
3) cho đa thức f(x)=mx^2-3x+2. Tìm m biết x=-1 là nghiệm của f(x)
tìm m, n để f(x) : g(x) biết f(x)= 2x^3 - mx^3 + 2nx - 7 và g(x)= x^2 - 5x - 6
1. Chứng minh đa thức f(x)=(x^2+x-1)^10+(x^2-x+1)^10-2 chia hết cho x^2-2
2. Chứng minh đa thức f(x)=x^12-x^9+x^4-x+1 không có nghiệm
3. Tìm a để đa thức f(x)=2x^2+7x+6 chia hết cho đa thức g(x)=x+a
4. Với giá trị nào của m thì đa thức f(x)=x^3+x^2-2x+1+m chia hết cho g(x)=2x+1
5. Tìm a,b,c sao cho f(x)=ax^3+b^2+c chia hết cho đa thức x+1 và f(x)=x^-1 thì dư x+5
Help me pleaseeeeeeeeeeeeeeeee
Chiều mai mình nộp rồi, bạn nào giúp được câu nào thì giúp giúp mình với, làm ơnnnnnnnn
Cho f(x) = x^2 – 2x + 3, g(x) = mx – 8m + 2. Tìm m để f(x) > g(x) với mọi x∈R
\(\Leftrightarrow f\left(x\right)-g\left(x\right)>0\Leftrightarrow x^2-x\left(2+m\right)+1+8m>0\forall x\in R\)
\(\Leftrightarrow\left\{{}\begin{matrix}a>0\\\Delta< 0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}1>0\left(lđ\right)\\m^2-28m>0\end{matrix}\right.\)\(\Leftrightarrow m\in\left(-\infty;0\right)\cup\left(28;+\infty\right)\)
cho các đa thức
f(x) = x^2 - (m-1)x+3m-2
g(x)= x^2 -2 (m+1) x-5m+1
h(x) = -2x^2 +mx - 7m +3
Tìm m biết :
a) đa thức f(x) có nghiệm là -1
b) đa thức g(x) có nghiệm là 2
c) đa thức h(x) có nghiệm là -1
d) f(1) = g(2) ; g(1) =h (-2)
a) \(f\left(x\right)=x^2-\left(m-1\right)x+3m-2\)
Để đa thức f(x) có nghiệm là -1 khi:
\(f\left(-1\right)=\left(-1\right)^2-\left(m-1\right).\left(-1\right)+3m-2=0\)
\(\Rightarrow1+m-1+3m-2=0\)
\(\Rightarrow4m=2\Rightarrow m=\dfrac{1}{2}\)
b) \(g\left(x\right)=x^2-2\left(m+1\right)x-5m+1\)
Để đa thức g(x) có nghiệm là 2 khi:
\(g\left(2\right)=2^2-2\left(m+1\right).2-5m+1=0\)
\(\Rightarrow4-4\left(m+1\right)-5m+1=0\)
\(\Rightarrow4-4m-1-5m+1=0\)
\(\Rightarrow-9m=-4\Rightarrow m=\dfrac{4}{9}\)
c) \(h\left(x\right)=-2x^2+mx-7m+3\)
Để đa thức h(x) có nghiệm là -1 khi:
\(h\left(-1\right)=-2\left(-1\right)^2+m.\left(-1\right)-7m+3=0\)
\(\Rightarrow-2-m-7m+3=0\)
\(\Rightarrow-8m=-1\Rightarrow m=\dfrac{1}{8}\)
d) -Để \(f\left(1\right)=g\left(2\right)\) khi và chỉ khi
\(1^2-\left(m-1\right).1+3m-2=2^2-2\left(m+1\right).2-5m+1\)
\(\Rightarrow1-m+1+3m-2=4-4m-4-5m+1\)
\(\Rightarrow11m=1\Rightarrow m=\dfrac{1}{11}\)
-Để \(g\left(1\right)=h\left(-2\right)\) khi và chỉ khi
\(1^2-2\left(m+1\right).1-5m+1=-2\left(-2\right)^2+m.\left(-2\right)-7m+3\)
\(\Rightarrow1-2m-2-5m+1=-8-2m-7m+3\)
\(\Rightarrow2m=-5\Rightarrow m=-\dfrac{5}{2}\)
Câu 1: Cho f(x) = −2x
4 + 3x
3 − 4x
2 + x − 7 và g(x) = −x
4 + 2x
3 − 3x
2 − x
3 + 3x
4 − 17. Khi
đó M(x) = f(x) + g(x)
Câu 2: Cho đa thức f(x) = −x
4 + 2x
3 − 5x
2 + 7x − 3 và g(x) = −3x
4 + 2x
3 − 7x + 5. Biết
M(x) = f(x) − g(x). Tính M(1) =?