cho tma giác ABC cân tại A (AB=AC) có AD là đường trung tuyến .kẻ DH \(\perp\)AB (H thuộc AB) kẻ DK \(\perp\)AC tại K
a/ c/tỏ tam giác BHD= tam giác CKD
b/ c/m AD là phân giác của \(\stackrel\frown{BAC}\)
c/ so sánh DH và DC ?
Cho tam giác ABC nhọn ( AB > AC ) có đường phân giác AD. Kẻ BH vuông góc với AD tại H, CK vuông góc với AD tại K.
a) Chứng minh tam giác BHD đồng dạng tam giác CKD
b) Chứng minh AB.AK=AC.AH
c) Chứng minh DH/DK=BH/CK=AB/AC
Bài 1: Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE=BA. Qua E kẻ đường thẳng d vuông góc với BC và d cắt AC tại D.
a) Tính độ dìa AC khi AB= 9cm, BC= 15cm
b) Chứng minh: Tam giác ABD=tam giác EBD
c) Gọi H là giao điểm của đường thẳng AB và đường thẳng d. Chứng minh tam giác HBC cân
d) Chứng minh: AD<DC
Bài 2: Cho tam giác ABC vuông tại A có AB= 12cm, AC= 16cm.Kẻ BF là đường trung tuyến của tam giác ABC. Từ điểm C kẻ đường thẳng vuông góc với AC cắt đường trung tuyến BF tại D
a) Tính độ dài BC?
b) Chứng minh rằng: Tam giác ABF=tam giác CDF
c) Chứng minh: BF<(AB+BC):2
Bài 3: Cho tam giacsABC vuông tại A; tia phân giác của góc B cắt AC tại D. Kẻ DH vuông góc với BC\(\left(H\in BC\right)\). Gọi K là giao điểm của AB và DH
a) Tính độ dài BC khi AB= 9cm, AC= 12cm
b) Chứng minh: Tam giác ABD=tam giác HBD
c) Chứng minh: Tam giác KDC cân
d) Chứng minh: AB+AC>BD+DC
Bài 4: Cho tam giác ABC vuông tại A. Trên tia BC lấy điểm H sao cho BH=BA. Tia phân giác của góc B cắt AC tại D. Gọi K là giao điểm của AB và DH
a) Tính độ dài BC khi AB= 3cm, AC= 4cm
b) Chứng minh: Tam giác ABD=tam giác HBD
c) Chứng minh \(Dh\perp BC\)
d) So sánh DH với DK
4 bài toàn là hình, lại khó, dài , mk nghĩ chắc ko ai tl giúp bn đâu, xl nha, ngay mk mới lp 6 cx chưa thể giải đc vì đã lp 7 đâu. ah hay là bn gửi tg bài 1 cho các bn ấy giải từ từ, cứ 1 đốg thì ai giải giúp bn đc. sorry nha
*In đậm: quan trọng.
#)Góp ý :
Giải thì vẫn giải đc, chỉ tại dài quá, người nhìn thấy dài thì chẳng ai muốn giải đâu, vì lười, mak mún kiếm P nhanh mà, là mình thì vẫn giải đc nhưng sẽ mất tg đó, chắc 15-30p :v
Bài 1: a, áp dụng định lí py-ta-go vào t.giác vuông ta có:
\(BC^2=AC^2+AB^2\)
=> \(AC^2=BC^2-AB^2\)
=> \(AC^2\)=225-81=144
=>AC=12 (cm)
vậy AC=12 cm
b, xét 2 tam giác vuông ABD và EBD có:
BD cạnh chung
BA=BE(gt)
=> \(\Delta ABD=\Delta EBD\)(cạnh huyền-cạnh góc vuông)
c, ta có: \(\Delta ADH=\Delta EDC\)(cạnh góc vuông-góc nhọn)
=> AH=EC(2 cạnh tương ứng)
Mà AB=EB(câu b) => HB=CB
=> \(\Delta HBC\)cân tại B
d, trong tam giác vuông ADH có: AD<DH(vì cạnh huyền lớn hơn cạnh góc vuông) mà DH=DC=> DC>AD hay AD<DC đpcm
3. Cho tam giác ABC vuông tại A, có BD là tia phân giác. Kẻ DH vuông góc với BC (E thuộc BC). Gọi F là giao điểm của BA và ED. Chứng minh :
a) BD là đường trung trực AE
b) DF=DC
c) AD<DC
4. Cho tam giác ABC vuông tại A, tia phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc với BC( H thuộc BC). GỌi K là giao điểm của AB và HE. Chứng minh rằng:
a) tam giác ABE = tam giác HBE
b) BE là đường trung trực của đoạn thẳng AH.
c) EK = EC và AE < EC
5. Cho tam giác ABC cân tại A (AB = AC), trung tuyến AM. Gọi D là một điểm nằm giữa A và M.
Chứng minh :
a) AM là tia phân giác góc A
b) tam giác ABD = tam giác ACD
c) tam giác BCD là tam giác cân
6. Cho tam giác ABC vuông tại A. Tia phân giác của góc ABC cắt AC tại D. Từ D kẻ DH vuông góc với BC tại H và DH cắt AB tại K.
a) Chứng minh : AD=DH
b) So sánh độ dài hai cạnh AD và DC
c) Chứng minh tam giác KBC là tam giác cân
5 )
tự vẽ hình nha bạn
a)
Xét tam giác ABM và tam giác ACM có :
AM cạnh chung
AB = AC (gt)
BM = CM (gt)
suy ra : tam giác ABM = tam giác ACM ( c-c-c)
suy ra : góc BAM = góc CAM ( 2 góc tương ứng )
Hay AM là tia phân giác của góc A
b)
Xét tam giác ABD và tam giác ACD có :
AD cạnh chung
góc BAM = góc CAM ( c/m câu a)
AB = AC (gt)
suy ra tam giác ABD = tam giác ACD ( c-g-c)
suy ra : BD = CD ( 2 cạnh tương ứng)
C) hay tam giác BDC cân tại D
3. Cho tam giác ABC vuông tại A, có BD là tia phân giác. Kẻ DH vuông góc với BC (E thuộc BC). Gọi F là giao điểm của BA và ED. Chứng minh :
a) BD là đường trung trực AE
b) DF=DC
c) AD<DC
4. Cho tam giác ABC vuông tại A, tia phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc với BC( H thuộc BC). GỌi K là giao điểm của AB và HE. Chứng minh rằng:
a) tam giác ABE = tam giác HBE
b) BE là đường trung trực của đoạn thẳng AH.
c) EK = EC và AE < EC
5. Cho tam giác ABC cân tại A (AB = AC), trung tuyến AM. Gọi D là một điểm nằm giữa A và M.
Chứng minh :
a) AM là tia phân giác góc A
b) tam giác ABD = tam giác ACD
c) tam giác BCD là tam giác cân
6. Cho tam giác ABC vuông tại A. Tia phân giác của góc ABC cắt AC tại D. Từ D kẻ DH vuông góc với BC tại H và DH cắt AB tại K.
a) Chứng minh : AD=DH
b) So sánh độ dài hai cạnh AD và DC
c) Chứng minh tam giác KBC là tam giác cân
Bài 4: a) Xét ABE vàHBE có:
BE chung
ABE= EBH (vì BE là phân giác)
=> ABE=HBE (cạnh huyền- góc nhọn)
b, Vì ABE=HBE(cmt)
=> BA = BH và EA = EH
=> điểm B, E cách đều 2 mút của đoạn thẳng AH
=>BE là đường trung trực của đoạn thẳng AH
c, Vì AC vuông góc BK => EAK = \(90\) độ
EH vuông góc BC => EHC = 90 độ
Xét AEK vàHEC có:
EAK = EHC (= 90độ)(cmt)
AE = EH (cmt)
AEK = HEC (đối đỉnh)
=> AEK HEC (g.c.g)
=> EK = EC (2 cạnh tương ứng)
Xét HEC vuông tại H (vì EHC = 90 độ )
có EH < EC(cạnh huyền lớn hơn cạnh góc vuông)
Mà AE = EH (cmt) => AE < EC
3. Cho tam giác ABC vuông tại A, có BD là tia phân giác. Kẻ DH vuông góc với BC (E thuộc BC). Gọi F là giao điểm của BA và ED. Chứng minh :
a) BD là đường trung trực AE
b) DF=DC
c) AD<DC
4. Cho tam giác ABC vuông tại A, tia phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc với BC( H thuộc BC). GỌi K là giao điểm của AB và HE. Chứng minh rằng:
a) tam giác ABE = tam giác HBE
b) BE là đường trung trực của đoạn thẳng AH.
c) EK = EC và AE < EC
5. Cho tam giác ABC cân tại A (AB = AC), trung tuyến AM. Gọi D là một điểm nằm giữa A và M.
Chứng minh :
a) AM là tia phân giác góc A
b) tam giác ABD = tam giác ACD
c) tam giác BCD là tam giác cân
6. Cho tam giác ABC vuông tại A. Tia phân giác của góc ABC cắt AC tại D. Từ D kẻ DH vuông góc với BC tại H và DH cắt AB tại K.
a) Chứng minh : AD=DH
b) So sánh độ dài hai cạnh AD và DC
c) Chứng minh tam giác KBC là tam giác cân
Bạn tự vẽ hình nha!!!
3a.
Xét tam giác ABD vuông tại A và tam giác EBD vuông tại E có:
ABD = EBD (BD là tia phân giác của ABE)
BD là cạnh chung
=> Tam giác ABD = Tam giác EBD (cạnh huyền - góc nhọn)
=> AB = EB (2 cạnh tương ứng) => B thuộc đường trung trực của AE
=> AD = ED (2 cạnh tương ứng) => D thuộc đường trung trực của AE
=> BD là đường trung trực của AE.
3b.
Xét tam giác AFD và tam giác ECD có:
FAD = CED ( = 90 )
AD = ED (tam giác ABD = tam giác EBD)
ADF = EDC (2 góc đối đỉnh)
=> Tam giác ADF = Tam giác EDC (g.c.g)
=> DF = DC (2 cạnh tương ứng)
3c.
Tam giác ADF vuông tại A có:
AD < FD (quan hệ giữa góc và cạnh đối diện trong tam giác vuông)
mà FD = CD (theo câu b)
=> AD < CD.
3a.
Xét tam giác ABD vuông tại A và tam giác EBD vuông tại E có:
ABD = EBD (BD là tia phân giác của ABE)
BD là cạnh chung
=> Tam giác ABD = Tam giác EBD (cạnh huyền - góc nhọn)
=> AB = EB (2 cạnh tương ứng) => B thuộc đường trung trực của AE
=> AD = ED (2 cạnh tương ứng) => D thuộc đường trung trực của AE
=> BD là đường trung trực của AE.
3b.
Xét tam giác AFD và tam giác ECD có:
FAD = CED ( = 90 )
AD = ED (tam giác ABD = tam giác EBD)
ADF = EDC (2 góc đối đỉnh)
=> Tam giác ADF = Tam giác EDC (g.c.g)
=> DF = DC (2 cạnh tương ứng)
3c.
Tam giác ADF vuông tại A có:
AD < FD (quan hệ giữa góc và cạnh đối diện trong tam giác vuông)
mà FD = CD (theo câu b)
=> AD < CD.
3. a.
xét tg ABD & EBD:
ABD=EBD(fan giác BD)
BAD=BED(=90độ)
BD(cạnh chung)
suy ra tg ABD=EBD(ch-gn)
sra: BA= BE(cctuong ung)sra: B thuộc trung trực AE(1)
sra: AD=De(cctuong ung)sra: D thuộc trung trực AE(2)
từ (1) và(2) sra: BD là trung trực AE
b. xét tg ADFvàEDF
AD=DE(cmt)
ADF=EDC(đối đỉnh)
DAF=DEC(90 độ)
sra: tg ADF=EDF(gcg)
sra:DF=DC(cct ứng)
c.tg EDC: ED<DC(cgv<ch)
mà ED=AD
sra: AD<DC
4.
a.xét tg ABE & HBE:
ABE=EBH(fan giác BD)
BAE=BHE(=90độ)
BE(cạnh chung)
suy ra tg ABE=HBE(ch-gn)
b. sra: BA= BE(cctuong ung)
sra: B thuộc trung trực AH(1)
sra: AE=He(cctuong ung)sra:E thuộc trung trực AE(2)
từ (1) và(2) sra: BE là trung trực AH
c. xét tg AEKvàHEC
AE=HE(cmt)
ADF=EDC(đối đỉnh)
AEK=HEC(90 độ)
sra: tg AEK=HEC(gcg)
sra:DF=DC(cct ứng)
tg HEC: EH<EC(cgv<ch)mà EA=EH
sra:EA<EC
5.
a.
Tg ABC cân: AM là trung tuyến
sra: Am là phân giác góc BAC(tính chất tam giác cân)
b.
xét tg ABD và ACD:
AB=AC(tg ABC cân)
BAD=CAD(fan giác Am)
AD (cạnh chung)
sra: tg ABD= ACD( cgc)
c. ta có: BD=CD(cctuong ứng)
sra: tg BCD cân tại D
6.
a.
vì D thuộc tia phân giác góc ABC
sra: DA=DH( D cách đều 2 cạnh của góc)
b.
tg HDC: HD<DC(cgv<ch)
mà DA=DH(cmt)
sra DA< DC
c.
Tg BKC: D là trực tâmsra: BD vuông góc KC
mà BD là phân giác góc KBC
sra: tg BKC cân
Bài 2. Cho tam giác ABC vuông tại A có AD là đường trung tuyến. Kẻ DH // AC và DK // AB (H thuộc AB, K thuộc AC)
a) Chứng minh H là trung điểm của AB và K là trung điểm của AC
b) Chứng minh AHDK là hình chữ nhật
a: Xét ΔABC có
D là trung điểm của BC
DH//AC
Do đó: H là trung điểm của AB
Xét ΔABC có
D là trung điểm của BC
DK//AB
Do đó: K là trung điểm của AC
Cho tam giác ABC vuông tại A có AB=6cm. AC=7cm. đường trung tuyến AD(D thuộc BC)
a, tính AD
b, kẻ DH vuông góc AB(H thuộc AB), DK vuông góc AC (K thuộc AC). Chứng minh AHDK là hcn
c, Khi tứ giác AHDK là hình vuông thì cm \(\frac{1}{AC}+\frac{1}{AB}=\frac{1}{DH}\)
Cho tam giác abc vuông tại a có ab<ac, đường cao ah. Kẻ ad là tia phân giác của goác HAC(D thuộc BC). Kẻ DK vuông góc với AC tại K.CMR:
a)tam giác dah = tam gác dak
b)ad là đường trung trực của hk
c)tam giác abd cân tại b
d)ab+ac<bc+ah