CMR a^2+b^2 > 2ab hoặc = với mọi a,b. Từ đó suy ra rằng mọi a,b,c thì a^2+b^2+c^2 > hoặc = ab+bc+ca
CMR a^2+b^2 > hoặc = với mọi a,b. Từ đó suy ra rằng mọi a,b,c thì a^2+b^2+c^2 > hoặc = ab+bc+ca
CMR a^2+b^2 > hoặc = với mọi a,b. Từ đó suy ra rằng mọi a,b,c thì a^2+b^2+c^2 > hoặc = ab+bc+ca
\(a^2+b^2+c^2\text{≥}ab+bc+ca\)
⇒\(2\left(a^2+b^2+c^2\right)\text{≥}2\left(ab+bc+ca\right)\)
⇒\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\text{≥}0\)
⇒\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\text{≥}0\) luôn đúng
CMR a^2+b^2 > hoặc = với mọi a,b. Từ đó suy ra rằng mọi a,b,c thì a^2+b^2+c^2 > hoặc = ab+bc+ca
Ta có \(a^2+b^2\ge2ab\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a+b\right)^2\ge0\) ( luôn đúng )
Tương tự, \(a^2+b^2+c^2\ge ab+bc+ac\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ac\ge0\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac\ge0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) ( luôn đúng )
Chứng minh rằng
a, a^2 + b^2 lớn hơn hoặc bằng 2ab với mọi a , b
b, a^2 + b^2 =C^2 lớn hơn hoặ bằng ab + bc + ca với mọi a , b
c , a^2 + b^2 lớn hơn hoặc bằng (a + b)^2 / 2 với mọi a , b
giải chi tiết giùm nha mình like cho
\(a^2+b^2=a^2-2ab+b^2+2ab=\left(a-b\right)^2+2ab\)
Vì \(\left(a-b\right)^2\ge0\Rightarrow\left(a-b\right)^2+2ab\ge2ab\left(dpcm\right)\)
CMR với mọi a,b,c thực thì
A) a^2+b^2+c^2+ab+Bc+ca lớn hơn hoặc bằng 0
B)a^2+b^2+c^2-ab-bc-ca lớn hơn hoặc băng 0
ta áp dụng cô-si la ra
a^2+b^2+c^2 ≥ ab+ac+bc
̣̣(a - b)^2 ≥ 0 => a^2 + b^2 ≥ 2ab (1)
(b - c)^2 ≥ 0 => b^2 + c^2 ≥ 2bc (2)
(a - c)^2 ≥ 0 => a^2 + c^2 ≥ 2ac (3)
cộng (1) (2) (3) theo vế:
2(a^2 + b^2 + c^2) ≥ 2(ab+ac+bc)
=> a^2 + b^2 + c^2 ≥ ab+ac+bc
dấu = khi : a = b = c
Bạn cm hộ mình cô si la dc k mình chưa học đến
CMR với mọi a,b,c thực thì
A) a^2+b^2+c^2+ab+Bc+ca lớn hơn hoặc bằng 0
B)a^2+b^2+c^2-ab-bc-ca lớn hơn hoặc băng 0
Cm hộ e ạ nếu CM đẳng thức thì giải thích đẳng thức cho e dc k ạ
A) a2+b2+c2+ab+bc+ca>=0 (*)
<=> 2a2+2b2+2c2+2ab+2bc+2ca>=0
<=> (a2+2ab+b2)+(b2+2bc+c2)+(c2+2ca+a2)>=0
<=> (a+b)2+(b+c)2+(c+a)2>=0
BĐT cuối luôn đúng với mọi a,b,c
Vậy BĐT (*) đc cm
Phần B cũng tương tự nhé
a) Ta có : a2 + b2 + c2 + ab + bc + ca = (a + b + c)2
Mà \(\left(a+b+c\right)^2\ge0\forall x\)
Nên : a2 + b2 + c2 + ab + bc + ca \(\ge0\forall x\)
b) hình như sai đề rồi bạn à !
CMR với mọi a,b,c,d,e thuộc R thì:
a, (a+b)2 > hoặc = 4ab
b, a2+b2+c2 > hoặc = ab+bc+ca
c, 3(a2+b2+c2) > hoặc = (a+b+c)2
d, (a+b+c)2 > hoặc = 3(ab+bc+ca)
e, a2+b2+c2+d2+e2 > hoặc = a(b+c+d+e)
\(a,\left(a+b\right)^2\ge4ab\\ \Leftrightarrow a^2+2ab+b^2-4ab\ge0\\ \Leftrightarrow a^2-2ab+b^2\ge0\\ \Leftrightarrow\left(a-b\right)^2\ge0\left(đúng\right)\)
Do đó \(\left(a+b\right)^2\ge4ab\)(đpcm)
Các câu sau tương tự
CMR
a2 + b2 + c2 lớn hơn hoặc bằng ab + bc + ca với mọi a,b,c
giả sử a2+b2+c2 lớn hơn bằng ab+bc+ca=)a2+b2+c2-ab-bc-ca lớn hơn bằng 0
=)2.(a2+b2+c2-ab-bc-ca) lớn hơn bằng 0
=)2a2+2b2+2c2-2ab-2bc-2ca lớn hơn bằng 0
=)(a2-2ab+b2)+(b2-2bc+c2)+(c2-2ca+a2) lớn hơn bằng 0
=)(a-b)2+(b-c)2+(c-a)2 lớn hơn bằng 0 mà (a-b)2,(b-c)2,(c-a)2 luôn lớn hơn bằng 0
=)điều giả sử đúng =)điều phải chứng minh
giả sử a2+b2+c2 lớn hơn bằng ab+bc+ca=)a2+b2+c2-ab-bc-ca lớn hơn bằng 0
=)2.(a2+b2+c2-ab-bc-ca) lớn hơn bằng 0
=)2a2+2b2+2c2-2ab-2bc-2ca lớn hơn bằng 0
=)(a2-2ab+b2)+(b2-2bc+c2)+(c2-2ca+a2) lớn hơn bằng 0
=)(a-b)2+(b-c)2+(c-a)2 lớn hơn bằng 0 mà (a-b)2,(b-c)2,(c-a)2 luôn lớn hơn bằng 0
=)điều giả sử đúng =)điều phải chứng minh
Cmr với mọi a, b , c thì:
\(1,\left(a-b+c\right)^2=a^2+b^2+c^2-2ab-2bc-2ca\)
\(2,a^2+b^2+c^2\ge ab+bc+ca\)
\(3,a^2+b^2+1\ge a^2+b+ab\)
Bài làm
a) Ta có: ( a - b + c )2 = [ a - ( b - c ) ]2
= a2 - 2a( b - c ) + ( b - c )2
= a2 - 2ab + 2ac + b2 - 2bc + c2
= a2 + b2 + c2 + 2ac - 2ab - 2bc
Mik làm mấy lần rồi nhưng vẫn ra kết quả như vậy, bạn xem lại đề nhé.
b) Ta có: a2 + b2 + c2 > ab + bc + ca
=> 2( a2 + b2 + c2 ) > 2( ab + bc + ca )
=> 2a2 + 2b2 + 2c2 > 2ab + 2bc + 2ca
=> 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ca > 0
=> ( a2 + b2 + c2 ) + ( a2 + b2 + c2 - 2ab - 2bc - 2ca ) > 0
=> ( a2 + b2 + c2 ) + ( a - b - c )2 > 0 ( Luôn đúng )
Vậy a2 + b2 + c2 > ab + bc + ca ( đpcm ).
c) a2 + b2 + 1 > a + b + ab ( mik nghĩ cái a ở vế phải phải là a thôi chứ không phỉa a^2. bạn kiểm tra đề nha )
=> 2a2 + 2b2 + 2 > 2a + 2b + 2ab
=> 2a2 + 2b2 + 2 - 2a - 2b - 2ab > 0
=> ( a2 - 2ab + b2 ) + ( a2 - 2a + 1 ) + ( b2 - 2b + 1 ) > 0
=> ( a - b )2 + ( a - 1 )2 + ( b - 1 )2 > 0 ( luôn đúng )
Vậy a2 + b2 + 1 > a + b + ab ( đpcm )
\(1,\left(a-b+c\right)^2=\left[\left(a-b\right)+c\right]^2\)
\(=\left(a-b\right)^2+2\left(a-b\right)c+c^2\)
\(=a^2+b^2+c^2-2ab-2bc-2ca\)
\(2,..2a^2+2b^2+2c^2-2ab-2ac-2bc\)
\(=\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\)
\(=\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
\(\Rightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)
\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)
Dấu "=" xảy ra khi a = b = c
3, Sửa đề : \(a^2+b^2+1\ge a+b+ab\)
Ta có : \(2a^2+2b^2+2-2a-2b-2ab\)
\(=\left(a^2-2ab+b^2\right)+\left(a^2-2a+1\right)+\left(b^2-2b+1\right)\)
\(=\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2\ge0\)
\(\Rightarrow2a^2+2b^2+2\ge2a+2b+2ab\)
\(\Leftrightarrow a^2+b^2+1\ge a+b+ab\)
Dấu "=" xảy ra khi a = b = 1
1)\(\left(a-b+c\right)^2=\left[\left(a-b\right)+c\right]^2\)\(=\left(a-b\right)^2+2\left(a-b\right)c+c^2\) \(=a^2-2ab+b^2+2ac-2bc+c^2\)
\(=a^2+b^2+c^2-2ab-2bc+2ac\)(Đề bài sai nhá bạn)
2) Ta có: \(\hept{\begin{cases}\left(a-b\right)^2\ge0\\\left(b-c\right)^2\ge0\\\left(c-a\right)^2\ge0\end{cases}\forall a,b,c\in R}\)<=>\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\forall a,b,c\in R\)\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=a^2-2ab+b^2+b^2-2ab+c^2+c^2-2ab+a^2\)
\(=2a^2+2b^2+2c^2-2ab-2bc-2ca\)
<=>\(2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\forall a,b,c\in R\)
=>\(a^2+b^2+c^2\ge ab+bc+ca\)
3) Theo câu 2, với c=1 =>\(a^2+b^2+1\ge a+b+ab\)