Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Kiều Quang Nam
Xem chi tiết
Hoàng Ninh
28 tháng 8 2021 lúc 19:45

Truong hop \(x=3\):

\(M\left(3\right)=\left(3\right)^2-4.3+3=0\Leftrightarrow x=3\) la nghiem cua da thuc \(M\left(x\right)\)(dpcm)

Truong hop \(x=-1\):

\(M\left(-1\right)=\left(-1\right)^2-4\left(-1\right)+3=9\Leftrightarrow x=-1\) khong la nghiem cua da thuc \(M\left(x\right)\)(dpcm)

Khách vãng lai đã xóa
Phạm Hà Anh Thư
Xem chi tiết
Yen Nhi
27 tháng 4 2022 lúc 18:21

a) \(P\left(x\right)=x^2+4x+9-2x^3\)\(=-2x^3+x^2+4x+9\)

\(Q\left(x\right)=2x^3-3x+2x^2-9=2x^3+2x^2-3x-9\)

b) \(M\left(x\right)=P\left(x\right)+Q\left(x\right)=\left(-2x^3+x^2+4x+9\right)+\left(2x^3+2x^2-3x-9\right)\)

\(=\left(-2x^3+2x^3\right)+\left(x^2+2x^2\right)+\left(4x-3x\right)+\left(9-9\right)\)

\(=3x^2+x\)

c) Ta có: \(M\left(x\right)=3x^2+x\)

\(\Rightarrow M\left(-\dfrac{1}{3}\right)=3.\left(-\dfrac{1}{3}\right)^2+\left(-\dfrac{1}{3}\right)=\dfrac{1}{3}+\left(-\dfrac{1}{3}\right)=0\)

Vậy \(x=-\dfrac{1}{3}\) là nghiệm của đa thức \(M\left(x\right)\)

Khang Huu
Xem chi tiết
lê anh vũ
Xem chi tiết
Dương Thị Chung
12 tháng 4 2016 lúc 22:03

bài 1:

a) C= 0

hay 3x+5+(7-x)=0

3x+(7-x)=-5

với 3x=-5

x= -5:3= \(x = { {-5} \over 3}\)

với 7-x=-5

x= 7+5= 12

=> nghiệm của đa thức C là: x=\(x = { {-5} \over 3}\) và x= 12

mình làm một cái thui nhá, còn đa thức D cậu lm tương tự nha

Đỗ Minh Hùng
12 tháng 4 2016 lúc 21:35

EM CHỊU RỒI ANH ƠI!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Mây Phiêu Du
Xem chi tiết
Ngô Văn Nam
20 tháng 8 2015 lúc 16:58

1000 tăng 21 tức là tỉ lệ tăng là: 21:1000=2,1% 
1 năm sau tăng: 4000x2,1%= 82 người 
Số dân sau 1 năm: 4000+82=4082 người 
b/ Tương tự tỉ lệ tăng: 15:1000=1,5% 
Số dân sau 1 năm: 4000x1,5%+4000=4060 người

thuy dang
18 tháng 4 2016 lúc 9:37

P(x)=3x^3+x^2+5x+8.Bậc 3,Hệ số cao nhất 5, hệ số tự do 8

Q(x)=3x^3-x^2-5.Bậc 3, Hệ số cao nhất 3,hệ số tự do 5

ý b cộng và trừ 2 đa thưc trên sau đó tìm nghiệm

Xét M(x)=0 suy ra...........

N(x)=5x+3

Vì 5x>_ 0hoac <_0; 3>0 suy ra 5x +3>0 suy ra N(x) k có nghiệm

❊ Linh ♁ Cute ღ
16 tháng 4 2018 lúc 21:04

a) Sắp xếp theo lũy thừa giảm dần

P(x)=x^5−3x^2+7x^4−9x^3+x^2−1/4x

=x^5+7x^4−9x^3−3x^2+x^2−1/4x

=x^5+7x^4−9x^3−2x^2−1/4x

Q(x)=5x^4−x^5+x^2−2x^3+3x^2−1/4

=−x^5+5x^4−2x^3+x^2+3x^2−1/4

=−x^5+5x^4−2x^3+4x^2−1/4

b)

P(x)+Q(x)

=(x^5+7x^4−9x^3−2x^2−1/4^x)+(−x^5+5x^4−2x^3+4x^2−1/4)

=x^5+7x^4−9x^3−2x^2−1/4x−x^5+5x^4−2x^3+4x^2−1/4

=(x^5−x^5)+(7x^4+5x^4)+(−9x^3−2x^3)+(−2x^2+4x^2)−1/4x−1/4

=12x^4−11x^3+2x^2−1/4x−1/4

P(x)−Q(x)

=(x^5+7x^4−9x^3−2x^2−1/4x)−(−x^5+5x^4−2x^3+4x^2−1/4)

=x^5+7x^4−9x^3−2x^2−1/4x+x^5−5x^4+2x^3−4x^2+1/4

=(x^5+x^5)+(7x^4−5x^4)+(−9x^3+2x^3)+(−2x^2−4x^2)−1/4x+1/4

=2x5+2x4−7x3−6x2−1/4x−1/4

c) Ta có

P(0)=0^5+7.0^4−9.0^3−2.0^2−1/4.0

⇒x=0là nghiệm của P(x).

Q(0)=−0^5+5.0^4−2.0^3+4.0^2−1/4=−1/4≠0

⇒x=0không phải là nghiệm của Q(x).

Nguyễn Hồng Trân
Xem chi tiết
Trần Thị Như
Xem chi tiết
Tt_Cindy_tT
12 tháng 5 2022 lúc 18:18

a, -Bậc =3

    -HS tự do = -5

    -HS cao nhất = 2

b, 2x3+x2+2x-5-(2x3-16)

=2x3+x2+2x-5-2x3+16

=(2x3-2x3)+x2+2x+(-5+16)

=x2+2x+11

c, 2.23-16

=2.8-16

=16-16

=0

=>2 là nghiệm của đa thức N(X)

Hoàng Hải Long
Xem chi tiết
Phạm Quỳnh Nga
8 tháng 5 2018 lúc 21:06

Ta có x4 \(\ge\)0 với mọi x

2x2 \(\ge\)0 với mọi x

\(\Rightarrow\)x^4-2x^2+2 \(\ge\) 2 

\(\Rightarrow\) M(x) \(\ge\)2

VẬY đa thức M(x)=x^4-2x^2+2 ko có nghiệm

Tường Vy
Xem chi tiết
TV Cuber
7 tháng 5 2022 lúc 23:17

\(P\left(0\right)=3.0^4+0^3-0^2+\dfrac{1}{4}.0=0+0-0+0=0\)

\(Q\left(0\right)=0^4-4.0^3+0^2-4=0-0+0-4=-4\)

vậy Chứng tỏ x=0 là nghiệm của đa thức P(x), nhưng không phải là nghiệm của đa thức Q(x)

TV Cuber
7 tháng 5 2022 lúc 23:15

thu gọn

\(P\left(x\right)=3x^4+x^3\left(-2x^2+x^2\right)+\dfrac{1}{4}x=3x^4+x^3-x^2+\dfrac{1}{4}x\)

\(Q\left(x\right)=x^4-4x^3+\left(3x^2-2x^2\right)-4=x^4-4x^3+x^2-4\)

Akai Haruma
7 tháng 5 2022 lúc 23:17

Lời giải:
Ta thấy:

$P(0)=-2.0^2+3.0^4+0^3+0^2-\frac{1}{4}.0=0$ nên $x=0$ là nghiệm của $P(x)$

$Q(0)=0^4+3.0^2-4-4.0^3-2.0^2=-4\neq 0$

Do đó $x=0$ không phải nghiệm của $Q(x)$