Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyên Nguyễn Văn Phúc
Xem chi tiết
Minh Tran
Xem chi tiết
Vũ Tiến Manh
26 tháng 10 2019 lúc 22:51

dễ thấy với điệu kiện đề bài thì xy(\(\sqrt{x}+\sqrt{y}-2.\))\(\ge0\)

 Vì x;y có vai trò ngang nhau nên giả sử x\(\ge y\)

đặt \(x^2=a,y^2=b;\sqrt{x}-1=m;\sqrt{y-1}=n\)=> am+bn= \(x^2\left(\sqrt{x}-1\right)+y^2\left(\sqrt{y}-1\right)\)

thì ta có \(a\ge b;m\ge n\)

=> (a-b)(m-n) \(\ge0< =>am+bn\ge an+bm< =>2am+2bn\ge\left(a+b\right)\left(m+m\right)\)

<=>\(am+bn\ge\frac{\left(a+b\right)\left(m+n\right)}{2}=\frac{\left(x^2+y^2\right)\left(\sqrt{x}-1+\sqrt{y}-1\right)}{2}\ge0\)

hay am+bn\(\ge0\)

vậy vế trái luôn lớn hơn bằng 0

dấu"="  khi \(\sqrt{x}+\sqrt{y}-2=0\)

Khách vãng lai đã xóa
Linh Mai
Xem chi tiết
Lightning Farron
28 tháng 5 2018 lúc 23:06

Đặt \(\left(\sqrt{x};\sqrt{y};\sqrt{z}\right)\rightarrow\left(a;b;c\right)\)\(\Rightarrow\left\{{}\begin{matrix}a+b+c=1\\a;b;c>0\end{matrix}\right.\)

\(\dfrac{ab}{\sqrt{a^2+b^2+2c^2}}+\dfrac{bc}{\sqrt{b^2+c^2+2a^2}}+\dfrac{ca}{\sqrt{c^2+a^2+2b^2}}\le\dfrac{1}{2}\)

Ta có:\(\dfrac{ab}{\sqrt{a^2+b^2+2c^2}}=\dfrac{2ab}{\sqrt{\left(1+1+2\right)\left(a^2+b^2+2c^2\right)}}\)

\(\le\dfrac{2ab}{a+b+2c}\le\dfrac{1}{2}\left(\dfrac{ab}{a+c}+\dfrac{ab}{b+c}\right)\)

Tương tự cho 2 BĐT còn lại rồi cộng theo vế:

\(VT\le\dfrac{1}{2}\left(\dfrac{ab+bc}{a+c}+\dfrac{ab+ac}{b+c}+\dfrac{bc+ac}{a+b}\right)\)

\(=\dfrac{1}{2}\left(a+b+c\right)=\dfrac{1}{2}\)

Dấu "=" khi \(a=b=c=\dfrac{1}{3}\Rightarrow x=y=z=\dfrac{1}{9}\)

LÂM 29
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 10 2021 lúc 21:46

\(x^3+x\ge2\sqrt{x^4}=2x^2\)

Tương tự:

\(y^3+y\ge2y^2\)

\(z^3+z\ge2z^2\)

Cộng vế:

\(x^3+y^3+z^3+x+y+z\ge2\left(x^2+y^2+z^2\right)=6\)

Dấu "=" xảy ra khi \(x=y=z=1\)

Dat
Xem chi tiết
Ngọc Nhi
Xem chi tiết
Ngọc Nhi
19 tháng 4 2018 lúc 12:12

chỗ ý 2 là x + y + z = 1 nha

LÂM 29
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 10 2021 lúc 21:27

\(x^3+y^3+y^3\ge3\sqrt[3]{x^3.y^3.y^3}=3xy^2\)

\(x^3+1+1\ge3x\)

\(2\left(y^3+1+1\right)\ge6y\)

Cộng vế:

\(2\left(x^3+2y^3\right)+6\ge3\left(x+2y+xy^2\right)=12\)

\(\Rightarrow x^3+2y^3\ge3\) (đpcm)

Dấu "=" xảy ra khi \(x=y=1\)

Ngọc Nhi
Xem chi tiết
tthnew
15 tháng 1 2021 lúc 16:57

Đặt \(\dfrac{1}{x+1}=a,\dfrac{1}{y+1}=b,\dfrac{1}{z+1}=c\Rightarrow a,b,c>0;a+b+c=1.\)

\(x=\dfrac{1}{a}-1\)

Cần chứng minh: \(\sum\sqrt{\dfrac{1}{a}-1}\le\dfrac{3}{2}\sqrt{\left(\dfrac{1}{a}-1\right)\left(\dfrac{1}{b}-1\right)\left(\dfrac{1}{c}-1\right)}\)

Hay \(\sum\sqrt{\dfrac{1}{a}-\dfrac{1}{a+b+c}}\le\dfrac{3}{2}\sqrt{\prod\left(\dfrac{1}{a}-\dfrac{1}{a+b+c}\right)}\)

Hay là \(\sum\sqrt{\dfrac{b+c}{a\left(a+b+c\right)}}\le\dfrac{3}{2}\sqrt{\prod\dfrac{\left(b+c\right)}{a\left(a+b+c\right)}}\)

Tương đương: \(\sum\sqrt{\dfrac{b+c}{a}}\le\dfrac{3}{2}\sqrt{\prod\dfrac{\left(b+c\right)}{a}}\)

\(\left[\sum\left(b+c\right)\left\{a+2\left(b+c\right)\right\}\right]\left[\sum\dfrac{1}{a\left\{a+2\left(b+c\right)\right\}}\right]\ge\left[\sum\sqrt{\dfrac{b+c}{a}}\right]^2\)

Từ đây cần chứng minh:

\(\dfrac{9}{4}\prod\dfrac{\left(b+c\right)}{a}\ge\left[\sum\left(b+c\right)\left\{a+2\left(b+c\right)\right\}\right]\left[\sum\dfrac{1}{a\left\{a+2\left(b+c\right)\right\}}\right]\)

Còn lại bạn tự làm hoặc không để tối rảnh mình làm.

 

tthnew
15 tháng 1 2021 lúc 17:53

Do hoc24.vn không cho cập nhật câu trả lời nữa nên mình đăng tiếp:

Thực hiện thay thế \(\left(a,b,c\right)\rightarrow\left(s-a',s-b',s-c'\right)\) với $a',b',c'$ là độ dài ba cạnh của một tam giác.

Đặt $\left\{ \begin{array}{l}a' + b' + c' = 2s\\a'b' + b'c' + c'a' = {s^2} + 4Rr + {r^2}\\a'b'c' = 4sRr\end{array} \right.$

Bất đẳng thức quy về: 

$${\dfrac { \left( 4\,R-24\,r \right) {s}^{4}+r \left( 72\,{R}^{2}+41\,Rr+8\,{r}^{2} \right) {s}^{2}+2\,{r}^{2} \left( 4\,R+r \right) ^{3}}{r{s}^{2} \left( 4\,{s}^{2}+r \left( 8\,R+r \right)  \right) }}\geqslant 0$$

\( \Leftrightarrow \left( {4{\mkern 1mu} R - 24{\mkern 1mu} r} \right){s^4} + r\left( {72{\mkern 1mu} {R^2} + 41{\mkern 1mu} Rr + 8{\mkern 1mu} {r^2}} \right){s^2} + 2{\mkern 1mu} {r^2}{\left( {4{\mkern 1mu} R + r} \right)^3} \geqslant 0\)

Hay là \({s^2}\left( {R - 2{\mkern 1mu} r} \right)\left( {9{\mkern 1mu} {r^2} + 4{\mkern 1mu} {s^2}} \right) + r\left[ {10{\mkern 1mu} {s^2}\left( {4{\mkern 1mu} {R^2} + 4{\mkern 1mu} Rr + 3{\mkern 1mu} {r^2} - {s^2}} \right) + \left( {8{\mkern 1mu} Rr + 2{\mkern 1mu} {r^2} + 2{\mkern 1mu} {s^2}} \right)\left( {16{\mkern 1mu} {R^2} + 8{\mkern 1mu} Rr + {r^2} - 3{\mkern 1mu} {s^2}} \right)} \right] \geqslant 0\)

Đây là điều hiển nhiên.

Ngoài ra phương pháp SOS, SS cũng có thể sử dụng ở đây.

 

Phạm Dương Ngọc Nhi
Xem chi tiết
Phạm Dương Ngọc Nhi
31 tháng 3 2019 lúc 7:02

@Akai Haruma