\(x^3+x\ge2\sqrt{x^4}=2x^2\)
Tương tự:
\(y^3+y\ge2y^2\)
\(z^3+z\ge2z^2\)
Cộng vế:
\(x^3+y^3+z^3+x+y+z\ge2\left(x^2+y^2+z^2\right)=6\)
Dấu "=" xảy ra khi \(x=y=z=1\)
\(x^3+x\ge2\sqrt{x^4}=2x^2\)
Tương tự:
\(y^3+y\ge2y^2\)
\(z^3+z\ge2z^2\)
Cộng vế:
\(x^3+y^3+z^3+x+y+z\ge2\left(x^2+y^2+z^2\right)=6\)
Dấu "=" xảy ra khi \(x=y=z=1\)
Cho các số thực dương x,y thỏa mãn xy+x+1 = 3y. Chứng minh rằng x3.y3+1≥2y3
Cho các số thực dương a,b,c thỏa mãn a+b+c+2abc=5. Chứng minh rằng:a3+b3+c3≥3
Cho các số thực dương x,y thoả mãn x+2y+xy2 = 4. Chứng minh rằng x3 +2y3 ≥ 3.mọi người giúp với mai là hạn nộp rồi
c) C = x(y2 +z2)+y(z2 +x2)+z(x2 +y2)+2xyz.
d) D = x3(y−z)+y3(z−x)+z3(x−y).
e) E = (x+y)(x2 −y2)+(y+z)(y2 −z2)+(z+x)(z2 −x2).
b) x2 +2x−24 = 0.
d) 3x(x+4)−x2 −4x = 0.
f) (x−1)(x−3)(x+5)(x+7)−297 = 0.
(2x−1)2 −(x+3)2 = 0.
c) x3 −x2 +x+3 = 0.
e) (x2 +x+1)(x2 +x)−2 = 0.
a) A = x2(y−2z)+y2(z−x)+2z2(x−y)+xyz.
b) B = x(y3 +z3)+y(z3 +x3)+z(x3 +y3)+xyz(x+y+z). c) C = x(y2 −z2)−y(z2 −x2)+z(x2 −y2).
cho x+y+z=a
x2+y2+z2=b
\(\dfrac{1}{\text{x
}}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{c}\)
Tính xy+yz+xz, x3+y3+z3
Cho x,y,z là các số thực dương thoả mãn \(x+y+z=xyz\) . Chứng minh rằng:
\(\frac{2}{\sqrt{1+x^2}}+\frac{1}{\sqrt{1+y^2}}+\frac{1}{\sqrt{1+z^2}}\le\frac{9}{4}\)
Cho x,y,z là các số thực dương thoả mãn \(x+y+z=xyz\) . Chứng minh rằng:
\(\frac{2}{\sqrt{1+x^2}}+\frac{1}{\sqrt{1+y^2}}+\frac{1}{\sqrt{1+z^2}}\le\frac{9}{4}\)
cho x,y,z là các số nguyên thỏa mãn (x-y)3+(y-z)3+(z-x)3=210
tính giá trị biểu thức P=|x-y|+|y-z|+|z-x|
Tính giá trị biểu thức:
a) A = 5 x 2 +10xy + 5 y 2 - 105 z 2 tại x = 5, y = 7 và z = 12;
b) B = 16 x 2 - y 2 + 4x + y tại x = l,3 và y = 0,8.
c*) C = x 3 + y 3 + z 3 - 3xyz tại x = 2, y = 3 và z = 5;
d*) D = 99 x 100 + 99 x 99 + 99 x 98 + . . . + 99 x 2 + 99x + 99 với x = 100.