Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hồng Hạnh
Xem chi tiết
Kaya Renger
7 tháng 5 2018 lúc 18:10

Áp dụng Bunyakovsky, ta có :

\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x.1+y.1\right)^2=1\)

=> \(\left(x^2+y^2\right)\ge\frac{1}{2}\)

=> \(Min_C=\frac{1}{2}\Leftrightarrow x=y=\frac{1}{2}\)

Mấy cái kia tương tự 

Lê Thị Thanh Huyền
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 12 2021 lúc 19:12

c: \(=\left(x+1\right)^2+1>0\forall x\)

Quỳnh Anh
5 tháng 2 2022 lúc 22:57

Trả lời:

a, \(x^2-6x+11=x^2-6x+9+2=\left(x-3\right)^2+2\ge2\forall x\)

Dấu "=" xảy ra khi x - 3 = 0 <=> x = 3

Vậy GTNN của biểu thức bằng 2 khi x = 3

b, \(-x^2+6x-11=-\left(x^2-6x+11\right)=-\left(x^2-6x+9+2\right)=-\left[\left(x-3\right)^2+2\right]\)

\(=-\left(x-3\right)^2-2\le-2\forall x\)

Dấu "=" xảy ra khi x - 3 = 0 <=> x = 3

Vậy GTLN của biểu thức bằng - 2 khi x = 3

c, \(x^2+2x+2=x^2+2x+1+1=\left(x+1\right)^2+1\ge1>0\forall x\inℤ\)  (đpcm)

Dấu "=" xảy ra khi x + 1 = 0 <=> x = - 1

Khách vãng lai đã xóa
Phúc Nguyễn
Xem chi tiết
Phú Quý Lê Tăng
21 tháng 5 2018 lúc 17:28

\(x^2+x+\frac{1}{x^2}+2x+2=\left(x^2+2+\frac{1}{x^2}\right)+\left(x+1\right)^2-1=\left(x+\frac{1}{x}\right)^2+\left(x+1\right)^2-1\ge-1\)

Vậy giá trị nhỏ nhất của biểu thức trên là -1 khi x=-1.

Huyền Lưu
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 7 2023 lúc 23:27

1:

a: =x^2-7x+49/4-5/4

=(x-7/2)^2-5/4>=-5/4

Dấu = xảy ra khi x=7/2

b: =x^2+x+1/4-13/4

=(x+1/2)^2-13/4>=-13/4

Dấu = xảy ra khi x=-1/2

e: =x^2-x+1/4+3/4=(x-1/2)^2+3/4>=3/4

Dấu = xảy ra khi x=1/2

f: x^2-4x+7

=x^2-4x+4+3

=(x-2)^2+3>=3

Dấu = xảy ra khi x=2

2:

a: A=2x^2+4x+9

=2x^2+4x+2+7

=2(x^2+2x+1)+7

=2(x+1)^2+7>=7

Dấu = xảy ra khi x=-1

b: x^2+2x+4

=x^2+2x+1+3

=(x+1)^2+3>=3

Dấu = xảy ra khi x=-1

 

HAN
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
19 tháng 9 2020 lúc 15:45

\(A=\sqrt{x^2-2x+1}+\sqrt{\left(x-4\right)^2}+\sqrt{\left(x-6\right)^2}\)

\(=\sqrt{\left(x-1\right)^2}+\left|x-4\right|+\left|x-6\right|\)

\(=\left|x-1\right|+\left|x-4\right|+\left|x-6\right|\)

\(=\left|x-4\right|+\left(\left|x-1\right|+\left|x-6\right|\right)\)

\(=\left|x-4\right|+\left(\left|x-1\right|+\left|6-x\right|\right)\)

Ta có \(\hept{\begin{cases}\left|x-4\right|\ge0\forall x\\\left|x-1\right|+\left|6-x\right|\ge\left|x-1+6-x\right|=\left|5\right|=5\end{cases}}\)

=> \(\left|x-4\right|+\left(\left|x-1\right|+\left|6-x\right|\right)\ge5\forall x\)

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-4=0\\\left(x-1\right)\left(6-x\right)\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\1\le x\le6\end{cases}}\Leftrightarrow x=4\)

=> MinA = 5 <=> x = 4

Khách vãng lai đã xóa
Nobi Nobita
19 tháng 9 2020 lúc 17:25

Ta có: \(A=\sqrt{x^2-2x+1}+\sqrt{\left(x-4\right)^2}+\sqrt{\left(x-6\right)^2}\)

\(\Rightarrow A=\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-4\right)^2}+\sqrt{\left(x-6\right)^2}\)

\(=\left|x-1\right|+\left|x-4\right|+\left|x-6\right|\)

\(=\left|x-4\right|+\left|x-1\right|+\left|x-6\right|\)

Xét \(\left|x-1\right|+\left|x-6\right|\)ta có: 

\(\left|x-1\right|+\left|x-6\right|=\left|x-1\right|+\left|6-x\right|\ge\left|x-1+6-x\right|=\left|5\right|=5\)(1)

Dấu " = " xảy ra \(\Leftrightarrow\left(x-1\right)\left(6-x\right)\ge0\)

TH1: Nếu \(\hept{\begin{cases}x-1< 0\\6-x< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 1\\6< x\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 1\\x>6\end{cases}}\)( vô lý )

TH2: Nếu \(\hept{\begin{cases}x-1\ge0\\6-x\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge1\\6\ge x\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge1\\x\le6\end{cases}}\Leftrightarrow1\le x\le6\)

mà \(\left|x-4\right|\ge0\)(2)

Từ (1) và (2) \(\Rightarrow A\ge5\)

Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}x-4=0\\1\le x\le6\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\1\le x\le6\end{cases}}\Leftrightarrow x=4\)

Vậy \(minA=5\)\(\Leftrightarrow x=4\)

Khách vãng lai đã xóa
Lê Vinh Hưng
Xem chi tiết
HT.Phong (9A5)
6 tháng 11 2023 lúc 19:13

Ta có:

\(M=x^2-2x\left(y+1\right)+3y^2+2025\)

\(M=x^2-2\cdot x\cdot\left(y+1\right)+\left(y+1\right)^2+3y^2+2025-\left(y+1\right)^2\) 

\(M=\left[x-\left(y+1\right)\right]^2+3y^2+2025-y^2-2y-1\)

\(M=\left(x-y-1\right)^2+2y^2-2y+2024\)

\(M=\left(x-y-1\right)^2+2\left(y-\dfrac{1}{2}\right)^2+\dfrac{4047}{2}\)

Mà: \(\left\{{}\begin{matrix}\left(x-y-1\right)^2\ge0\\2\left(y-\dfrac{1}{2}\right)^2\ge0\end{matrix}\right.\)

\(\Rightarrow M=\left(x-y-1\right)^2+2\left(y-\dfrac{1}{2}\right)^2+\dfrac{4047}{2}\ge\dfrac{4047}{2}\)

Dấu "=" xảy ra khi:

\(\left\{{}\begin{matrix}x-y-1=0\\y-\dfrac{1}{2}=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}+1\\y=\dfrac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{3}{2}\\y=\dfrac{1}{2}\end{matrix}\right.\) 

Vậy GTNN của M là .... 

Phúc Nguyễn
Xem chi tiết
Phương Linh
Xem chi tiết
Tạ Duy Phương
20 tháng 10 2015 lúc 22:30

a) x2 - 2x + 5 = (x - 1)2 + 4 >= 4

Min là 4 khi x = 1

 

Nguyễn Hải Anh
Xem chi tiết
Đạt Nguyễn
Xem chi tiết