Cho a/a+b+b/a+c+c/a+b=1. Chứng minh rằng: a2/b+c+b2/c+a+c2/a+b=0
Cho a+b+c=0 ; \(\dfrac{1}{a}\)+\(\dfrac{1}{b}\)+\(\dfrac{1}{c}\)=0. Chứng minh rằng: a2+b2+c2=1
1/a+1/b+1/c=0
=>(ab+ac+bc)/abc=0
=> ab+ac+bc=0
(a+b+c)^2=a^2+b^2+c^2+2(ab+ac+bc)=0
=> a^2+b^2+c^2=0
Bạn xem lại đề nhé.
Cho a,b,c >0 và a2+b2+c2=3
Chứng minh rằng \(\dfrac{1}{a^3+a+2}\) + \(\dfrac{1}{b^3+b+2}\) + \(\dfrac{1}{c^3+c+2}\) ≥ \(\dfrac{3}{4}\)
Cho a, b, c thỏa mãn: 0 < a < 1 ; 0 < b < 1 ; 0 < c < 1 v à a + b + c = 2 . Chứng minh: a 2 + b 2 + c 2 < 2
Ta có:
0 < a < 1 ⇒ a - 1 < 0 ⇒ a(a - 1) < 0 ⇒ a2 - a < 0 (1)
Tương tự:
0 < b < 1 ⇒ b2 - b < 0 (2)
0 < c < 1 ⇒ c2 - c < 0 (3)
Cộng (1); (2); (3) vế theo vế ta được:
a2 + b2 + c2 - a - b - c < 0
⇔ a2 + b2 + c2 < a + b + c
⇔ a2+ b2 + c2 < 2 (do a + b + c = 2)
cho a,b,c >0 , thỏa mãn : a2+b2+c2 =3 .chứng minh rằng a/b+ b/c +c/a >= 9/(a+b+c)
Rất khủng khiếp (tại cái chương trình của em nó xấu:v) nhưng nó là một cách chứng minh:
\(\Leftrightarrow\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)^2\ge\frac{27\left(a^2+b^2+c^2\right)}{\left(a+b+c\right)^2}\)
\(\Leftrightarrow\left(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\right)^2\ge\frac{27\left(x^2+y^2+z^2\right)}{\left(x+y+z\right)^2}\)
Sau khi quy đồng, ta cần chứng minh biểu thức sau đây không âm:
Hiển nhiên đúng vì \(x=min\left\{x,y,z\right\}\)
Cho a + b + c = a2 + b2 + c2 = 1 và\(\dfrac{x}{a}\)=\(\dfrac{y}{b}\)=\(\dfrac{z}{c}\)( a≠0,b≠0,c≠0 )
Chứng minh rằng (x+y+z)2=x2+y2+z2
Giúp mình với ạ, mai mình thi rồi !!!!
Cho a,b,c không âm. Chứng minh rằng :
a) a2 + b2 + c2 + 2abc + 2 > hoặc=ab +bc +ca +a+b+c
b)a2 + b2 +c2 +abc +4 > hoặc = 2(ab+bc+ca)
c) 3(a2 + b2 + c2) + abc +4 > hoặc =4 (ab+bc+ca)
d) 3(a2 + b2 + c2) + abc +80 > 4(ab+bc+ca) + 8(a+b+c)
Chứng minh rằng: Trong 3 số a,b,c tồn tại 2 số bằng nhau nếu a2(a-c)+b2(a-c)+c2(a-b)=0
Ta biến đổi : a2 ( b - c ) + b2 ( c - a ) + c2 ( a - b ) = 0 thành ( a - b ) ( b - c ) ( a - c ) = 0
Ta suy ra : a = b hoặc b = c hoặc c = a
Vậy 3 số a,b,c tồn tại 2 số bằng nhau
à quên, cách biến đổi như vậy bạn tham khảo ở đây : Câu hỏi của Tên của bạn - Toán lớp 8 - Học toán với OnlineMath
cho tỷ lệ thức a/c=c/b (a,b,c khác 0). Chứng minh
a) a2+c2/b2+c2=a/b
b) b2-a2 / a2+c2= b-a/a
\(a,\dfrac{a}{c}=\dfrac{c}{b}\Leftrightarrow\dfrac{a^2}{c^2}=\dfrac{c^2}{b^2}=\dfrac{a^2+c^2}{b^2+c^2}\left(1\right)\)
Mà \(\dfrac{a}{c}=\dfrac{c}{b}\Leftrightarrow ab=c^2\Leftrightarrow\dfrac{a}{b}=\dfrac{c^2}{b^2}\left(2\right)\)
Từ \(\left(1\right)\left(2\right)\tođpcm\)
\(b,\dfrac{a}{c}=\dfrac{c}{b}\Leftrightarrow ab=c^2\)
\(\Leftrightarrow\dfrac{b^2-a^2}{a^2+c^2}=\dfrac{\left(b-a\right)\left(b+a\right)}{a^2+ab}=\dfrac{\left(b-a\right)\left(b+a\right)}{a\left(a+b\right)}=\dfrac{b-a}{a}\left(đpcm\right)\)
Cho a,b,c >0 và a2+b2+c2=3
Chứng minh rằng \(\dfrac{1}{a^3+a+2}\) + \(\dfrac{1}{b^3+b+2}\) + \(\dfrac{1}{c^3+c+2}\) ≥ \(\dfrac{3}{4}\)
Ta chứng minh BĐT sau:
\(\dfrac{1}{x^3+x+2}\ge\dfrac{-x^2+3}{8}\) với \(x>0\)
Thật vậy, BĐT tương đương:
\(\left(x^2-3\right)\left(x^3+x+2\right)+8\ge0\)
\(\Leftrightarrow\left(x-1\right)^2\left(x^3+2x^2+x+2\right)\ge0\) (luôn đúng)
Áp dụng:
\(\Rightarrow VT\ge\dfrac{-a^2+3}{8}+\dfrac{-b^2+3}{8}+\dfrac{-c^2+3}{8}=\dfrac{9-\left(a^2+b^2+c^2\right)}{8}=\dfrac{3}{4}\)
Dấu "=" xảy ra khi \(a=b=c=1\)
1. cho a, b, c > 0 và a + b + c =< căn3
Tìm min D biết D = căn(a2 + 1/b2) + căn(b2 + 1/c2) + căn(c2 + 1/a2)
2. Cho a, b, c > 0 và abc = 1
Chứng minh a3/[(1+b)(1+c)] + b3/[(1+c)(1+a)] + c3/[(1+a)(1+b)]
3. Cho a, b, c là 3 cạnh của tam giác. Chứng minh ab + bc + ca =< (c + a - b)4/[a(a + b - c)] + (a + b - c)4/[b(b + c - a)] + (b + c - a)4/[c(a + c - b)]
4. Cho x, y, z > 0
chứng minh (xyz)/[(1+3x)(x+8y)(y+9z)(z+6)] =< 1/74