Tính B = \(\dfrac{1+2+2^2+2^3+....+2^{2008}}{1-2^{2009}}\)
Tính tổng \(\dfrac{1+2+2^2+2^3+...+2^{2008}}{1-2^{2009}}\)
\(=\dfrac{2\left(1+2+2^2+...+2^{2008}\right)-\left(1+2+2^2+...+2^{2008}\right)}{1-2^{2009}}\)
\(=\dfrac{\left(2+2^2+2^3+...+2^{2009}\right)-\left(1+2+2^2+...+2^{2008}\right)}{1-2^{2009}}\)
\(=\dfrac{2^{2009}-1}{1-2^{2009}}=-1\)
So sánh \(A=\dfrac{2008^{2009}+2}{2008^{2009}-1};B=\dfrac{2008^{2009}}{2008^{2009}-3}\)
ta có: \(A=\dfrac{2008^{2009}+2}{2008^{2009}-1}=\dfrac{2008^{2009}-1+3}{2008^{2009}-1}=1+\dfrac{3}{2008^{2009}-1}\)
B=\(\dfrac{2008^{2009}}{2008^{2009}-3}=\dfrac{2008^{2009}-3+3}{2008^{2009}-3}=1+\dfrac{3}{2008^{2009}-3}\)
ta thấy: \(1+\dfrac{3}{2008^{2009}-1}\)<\(1+\dfrac{3}{2008^{2009}-3}\)
vậy A<B
B= \(\dfrac{1+2+2^2+2^3+...+2^{2008}}{1-2^{2009}}\)
giúp mình nha !!!!!!!!!!
Đặt \(C=1+2+2^2+...+2^{2007}+2^{2008}\)
\(\Rightarrow2C=2+2^2+2^3+...+2^{2008}+2^{2009}\)
\(\Rightarrow2C-C=2^{2009}-1\)
\(\Rightarrow C=2^{2009}-1\)
\(\Rightarrow B=\dfrac{2^{2009}-1}{1-2^{2009}}=\dfrac{-1\left(1-2^{2009}\right)}{1-2^{2009}}=-1\)
Giải:
B=1+2+22+23+...+22008/1-22009
Ta gọi phần tử là A, ta có:
A=1+2+22+23+...+22008
2A=2+22+23+24+...+22009
2A-A=(2+22+23+24+...+22009)-(1+2+22+23+...+22008)
A=22009-1
Vậy B=22009-1/1-22009
Chúc bạn học tốt!
Tính tổng S= \(\dfrac{1+2+2^2+2^3+...+2^{2008}}{1-2^{2009}}\)
Giúp mình với mình đang cần gấp!!!
Lời giải:
Xét tử số:
$X=1+2+2^2+2^3+...+2^{2008}$
$2X=2+2^2+2^3+2^4+....+2^{2009}$
$\Rightarrow 2X-X=(2+2^2+2^3+2^4+....+2^{2009})-(1+2+2^2+...+2^{2008})$
$\Rightarrow X=2^{2009}-1$
$\Rightarrow S=\frac{X}{1-2^{2009}}=\frac{2^{2009}-1}{-(2^{2009}-1)}=-1$
1. \(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}+\frac{1}{2^{100}}+\frac{1}{2^{100}}\)
2. So sánh: \(\dfrac{2008}{2009}+\dfrac{2009}{2010}\) và \(\dfrac{2008+2009}{2009+2010}\)
1.
\(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}+\frac{1}{2^{100}}+\frac{1}{2^{100}}\)
\(=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}+\left(\frac{1}{2^{100}}+\frac{1}{2^{100}}\right)\)
\(=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}+\frac{1}{2^{99}}\)
cứ làm như vậy ta được :
\(=1+1=2\)
2. Ta có :
\(\frac{2008+2009}{2009+2010}=\frac{2008}{2009+2010}+\frac{2009}{2009+2010}\)
vì \(\frac{2008}{2009}>\frac{2008}{2009+2010}\); \(\frac{2009}{2010}>\frac{2009}{2009+2010}\)
\(\Rightarrow\frac{2008}{2009}+\frac{2009}{2010}>\frac{2008+2009}{2009+2010}\)
1)Tính tỉ số \(\dfrac{A}{B}=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2007}+\dfrac{1}{2008}+\dfrac{1}{2009}}{\dfrac{2008}{1}+\dfrac{2007}{2}+\dfrac{2006}{3}+...+\dfrac{2}{2007}+\dfrac{1}{2008}}\)
2) chứng minh: \(\dfrac{3}{1^2.2^2}+\dfrac{5}{2^2.3^2}+\dfrac{7}{3^2.4^2}+..+\dfrac{19}{9^2.10^2}< 1\)
1)\(\dfrac{A}{B}=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2007}+\dfrac{1}{2008}+\dfrac{1}{2009}}{\dfrac{2008}{1}+\dfrac{2007}{2}+\dfrac{2006}{3}+...+\dfrac{2}{2007}+\dfrac{1}{2008}}\)
\(\dfrac{A}{B}=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2007}+\dfrac{1}{2008}+\dfrac{1}{2009}}{2008+\dfrac{2007}{2}+\dfrac{2006}{3}+...+\dfrac{2}{2007}+\dfrac{1}{2008}}\)
\(\dfrac{A}{B}=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2007}+\dfrac{1}{2008}+\dfrac{1}{2009}}{1+\left(\dfrac{2007}{2}+1\right)+\left(\dfrac{2006}{3}+1\right)+...+\left(\dfrac{2}{2007}+1\right)+\left(\dfrac{1}{2008}+1\right)}\)
\(\dfrac{A}{B}=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2007}+\dfrac{1}{2008}+\dfrac{1}{2009}}{\dfrac{2009}{2009}+\dfrac{2009}{2}+\dfrac{2009}{3}+...+\dfrac{2009}{2007}+\dfrac{2009}{2008}}\)
\(\dfrac{A}{B}=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2007}+\dfrac{1}{2008}+\dfrac{1}{2009}}{2009\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2007}+\dfrac{1}{2008}+\dfrac{1}{2009}\right)}\)
\(\dfrac{A}{B}=\dfrac{1}{2009}\)
2) \(A=\dfrac{3}{1^2.2^2}+\dfrac{5}{2^2.3^2}+\dfrac{7}{3^2.4^2}+...+\dfrac{19}{9^2.10^2}\)
\(A=\dfrac{2^2-1^2}{1^2.2^2}+\dfrac{3^2-2^2}{2^2.3^2}+\dfrac{4^2-3^2}{3^2.4^2}+...+\dfrac{10^2-9^2}{9^2.10^2}\)
\(A=1-\dfrac{1}{2^2}+\dfrac{1}{2^2}-\dfrac{1}{3^2}+\dfrac{1}{3^2}-\dfrac{1}{4^2}+...+\dfrac{1}{9^2}-\dfrac{1}{10^2}\)
\(A=1-\dfrac{1}{10^2}< 1\left(đpcm\right)\)
Cmr : A = \(\sqrt{1+2008^2+\dfrac{2008^2}{2009^2}+\dfrac{2008}{2009}}\) là số tự nhiên
Tính nhanh:
a) A = 2\(^{2010}\) - 2\(^{2009}\) - 2\(^{2008}\) - 2\(^{2007}\) - ... - 2 - 1
b) B = 20 . 8 - 33 . 64 + 17 . 8 + 9 . 16 . 8 - 11 . 128
c) C = ( \(\dfrac{1}{1.2.3}\) + \(\dfrac{1}{2.3.4}\) + ... + \(\dfrac{1}{2009.2010.2011}\) ) . \(\dfrac{2010.2011}{1010.527}\)
a) \(A=2^{2010}-2^{2009}-2^{2008}-...-2-1\)
\(A=2^{2010}\left(2^{2009}+2^{2008}+...+2+1\right)\)
Đặt \(\text{A = 1 + 2 + . . . + 2^{2008} + 2^{2009}}\)
\(\text{⇒ 2 A = 2 + 2 2 + . . + 2^{2010}}\)
⇒ \(A=2^{2010}-1\)
⇒ \(A=2^{2010}-\left(2^{2010}-1\right)\)
⇒ \(A=1\)
b) \(B=2072\)
c) \(\dfrac{4949}{19800}\)
Xin lỗi mình không có nhiều thời gian để giải thích trên đây á nên tạm gửi ảnh mình tạo nhé . Học tốt !
\(\dfrac{x+1}{2010}+\dfrac{x+2}{2009}+\dfrac{x-3}{2008}+...+\dfrac{x-2009}{2}+\dfrac{x-2010}{1}=-2010\)
\(\Leftrightarrow\dfrac{x+1}{2010}+1+\dfrac{x+2}{2009}+1+...+\dfrac{x+2009}{2}+1+\dfrac{x+2010}{1}+1=0\)
=>x+2011=0
hay x=-2011
giải phương trình:
a) \(\left(\dfrac{x}{2}+1\right)^3-\dfrac{x^3}{2}-4=0\)
b) \(\dfrac{3-x}{2007}+1=\dfrac{2-x}{2008}-\dfrac{x}{2009}\)
Lời giải:
a)
PT \(\Leftrightarrow \frac{(x+2)^3}{8}-\frac{x^3+8}{2}=0\)
\(\Leftrightarrow (x+2)^3-4(x^3+8)=0\)
\(\Leftrightarrow (x+2)^3-4(x+2)(x^2-2x+4)=0\)
\(\Leftrightarrow (x+2)[(x+2)^2-4(x^2-2x+4)]=0\)
\(\Leftrightarrow (x+2)(-3x^2+12x-12)=0\)
\(\Leftrightarrow (x+2)(x^2-4x+4)=0\Leftrightarrow (x+2)(x-2)^2=0\Rightarrow x=\pm 2\)
b) Bạn kiểm tra lại xem có sai đề không?