Lời giải:
Xét tử số:
\(X=1+2+2^2+2^3+....+2^{2008}\)
\(\Rightarrow 2X=2+2^2+2^3+...+2^{2008}+2^{2009}\)
Lấy vế sau trừ đi vế trước:
\(2X-X=(2+2^2+2^3+...+2^{2009})-(1+2+2^2+2^3+...+2^{2008})\)
\(X=2^{2009}-1\)
Do đó:
\(B=\frac{1+2+2^3+...+2^{2008}}{1-2^{2009}}=\frac{2^{2009}-1}{1-2^{2009}}=-1\)
Có \(B=\dfrac{1+2+2^2+2^3+...........+2^{2008}}{1-2^{2009}}\)
Ta xét tử số:
Đặt A = \(1+2+2^2+2^3+...........+2^{2008}\)
\(2A=2+2^2+2^3+2^4+..........+2^{2009}\)
\(2A-A=\left(2+2^2+2^3+2^4+......+2^{2009}\right)-\left(1+2+2^2+2^3+.........+2^{2008}\right)\)
A = \(2^{2009}-1\)
Thay vào B ta lại có:
\(\dfrac{2^{2009}-1}{1-2^{2009}}=\dfrac{-1}{1}=-1\)
Vậy B = -1