Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
tthnew
Xem chi tiết
Trên con đường thành côn...
31 tháng 8 2021 lúc 14:21

Ad ơi cho em hỏi cách chứng minh ạ. Và ví dụ như khi làm bài có cần chứng minh lại không ạ?

Rin Huỳnh
31 tháng 8 2021 lúc 15:47

Bài chứng minh của Nguyễn Tiến Dũng: http://geometry-math-journal.ro/pdf/Volume6-Issue1/6.pdf

Bài chứng minh của Nguyễn Minh Hà: http://geometry-math-journal.ro/pdf/Volume6-Issue1/4.pdf

hehehe
3 tháng 9 2021 lúc 9:00

uk

Quoc Tran Anh Le
Xem chi tiết
Đỗ Thanh Hải
30 tháng 7 2021 lúc 20:46

các bạn khác k làm thì đừng cmt vô đây mấy bài của các bạn giải bị trôi

missing you =
30 tháng 7 2021 lúc 21:02

1, \(\)BDT AM-GM

\(=>\sqrt{a^2+b^2}\ge\sqrt{2ab}\left(1\right)\)

tương tuqj \(=>\sqrt{b^2+c^2}\ge\sqrt{2bc}\left(2\right)\)

\(=>\sqrt{c^2+a^2}\ge\sqrt{2ac}\left(3\right)\)

cộng vế (1)(2)(3)

\(=>Vt=\sqrt{2}\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)=\sqrt{2021}\)

\(=>\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=\dfrac{\sqrt{2021}}{\sqrt{2}}\)

\(=>\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\le a+b+c\)\(=>a+b+C\ge\dfrac{\sqrt{2021}}{\sqrt{2}}\)

đặt \(P=\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\)

\(=>P\ge\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\dfrac{a+b+c}{2}=\dfrac{1}{2}.\dfrac{\sqrt{2021}}{\sqrt{2}}\)

dấu"=" xảy ra<=>\(a=b=c=\dfrac{\sqrt{2021}}{3\sqrt{2}}\)

heliooo
30 tháng 7 2021 lúc 20:45

Yep em sẽ like giúp ạ :))

Cmt đầu :))

tthnew
Xem chi tiết
missing you =
31 tháng 7 2021 lúc 9:06

C7, \(\dfrac{\left(b+c\right)\left(a^2+bc\right)}{b^2+bc+c^2}\ge\dfrac{\left(2\sqrt{bc}\right).\left(2a\sqrt{bc}\right)}{3\sqrt[3]{b^2.bc.c^2}}=\dfrac{4abc}{3abc}=\dfrac{4}{3}\left(1\right)\)

tương tự \(=>\dfrac{\left(a+c\right)\left(b^2+Ac\right)}{a^2+ac+c^2}\ge\dfrac{4}{3}\left(2\right)\)

\(=>\dfrac{\left(b+a\right)\left(c^2+ba\right)}{a^2+ab+b^2}\ge\dfrac{4}{3}\left(3\right)\)

cộng vế (1)(2)(3) \(=>P\ge4\)

dấu"=" xảy ra<=>a=b=c=1

htfvânz
31 tháng 7 2021 lúc 8:51

cmt và chẳng hiều j hết :>

Nguyen Ha My
31 tháng 7 2021 lúc 9:02

ằng một đoạn văn khoảng 8 câu, em hãy trình bày cảm nhận của mình về nhân vật Mèo trong truyện Bức tranh của em gái tôi. Trong đoạn văn, có sử dụng một phép so sánh (yêu cầu gạch chân câu có phép so sánh đó và chú thích rõ)

Quoc Tran Anh Le
Xem chi tiết
Yeutoanhoc
14 tháng 6 2021 lúc 15:34

Sáng nay đề chuyên Nguyễn Huệ khó lắm ạ mình làm được mỗi câu a. :(

Kậu...chủ...nhỏ...!!!
15 tháng 6 2021 lúc 9:22

mới đọc đề thôi mà đã nát não *điên*

missing you =
15 tháng 6 2021 lúc 14:32

khó thật đấy ông ạ , Tôi và chắc dưới trung bình qúa:*((

Quoc Tran Anh Le
Xem chi tiết
Minh Nhân
14 tháng 3 2021 lúc 20:59

Ai chưa xem thì nên xem thử nha, giàu cảm xúc lắm đấy :))

Bộ phim này lấy đi nước mắt của rất nhiều khán giả.

︵✰Ah
14 tháng 3 2021 lúc 20:59

Hay vậy :))
Em cx đang xem phim này

Quoc Tran Anh Le
Xem chi tiết
ILoveMath
2 tháng 8 2021 lúc 15:42

comment đầu

hnamyuh
2 tháng 8 2021 lúc 15:42

Ảo ma canada...

Minh Nhân
2 tháng 8 2021 lúc 15:43

j z tr

Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
2 tháng 8 2021 lúc 15:53

Đánh lại câu 17 dành cho ai thấy mờ quá:

CMR với \(n\ge6\)\(\sqrt{1+\dfrac{2.6.10...\left(4n-2\right)}{\left(n+5\right)\left(n+6\right)...2n}}\) là số nguyên dương.

Trần Thanh Phương
2 tháng 8 2021 lúc 16:36

C18: 

\(A=a^3+b^3+c^3+3a^2+3b^2+3c^2\)'

\(=a^3+3a^2+2a+b^3+3b^2+2b+c^3+3c^2+2c-2\left(a+b+c\right)\)

\(=a\left(a+1\right)\left(a+2\right)+b\left(b+1\right)\left(b+2\right)+c\left(c+1\right)\left(c+2\right)-2\left(a+b+c\right)\) 

Xét \(a\left(a+1\right)\left(a+2\right)\) là tích 3 số nguyên liên tiếp nên tích của chúng chia hết cho 6.

Lại có \(a+b+c⋮3\) nên \(2\left(a+b+c\right)⋮6\)

Từ đó suy ra \(A⋮6\) ( đpcm )

Trên con đường thành côn...
2 tháng 8 2021 lúc 16:37

Câu C18 các anh chị nhường cho các bạn lớp 7, lớp 8 nhé.

Quoc Tran Anh Le
Xem chi tiết
❤ ~~ Yến ~~ ❤
2 tháng 8 2021 lúc 19:54

Không có mô tả.

QEZ
2 tháng 8 2021 lúc 20:35

bài 2 

cđ dđ 

\(I_1=\dfrac{\xi_1}{r_1+R_1}=4\left(A\right)\)

\(I_2=\dfrac{\xi_2}{r_2+R_2}=3\left(A\right)\)

\(I_3=\dfrac{\xi_3}{r_3+R_3}=1\left(A\right)\)

\(U_{AB}=-\xi_2+I_2r_2=-6\left(V\right)\)

M r . V ô D a n h
2 tháng 8 2021 lúc 19:16

chịu

Quoc Tran Anh Le
Xem chi tiết
Trên con đường thành côn...
3 tháng 8 2021 lúc 20:10

undefined

黃旭熙.
3 tháng 8 2021 lúc 20:23

C27.1

Ta có: \(P=a^2+b^2+\dfrac{5}{a+b+1}=\left(a^2+1\right)+\left(b^2+1\right)+\dfrac{5}{a+b+ab+1+1}-2\)

\(\ge\dfrac{\left(a+1\right)^2}{2}+\dfrac{\left(b+1\right)^2}{2}+\dfrac{5}{\left(a+1\right)\left(b+1\right)+1}-2\)

\(\ge2\sqrt{\dfrac{\left(a+1\right)^2\left(b+1\right)^2}{4}}+\dfrac{5}{\left(a+1\right)\left(b+1\right)+1}-2\)

\(=\left(a+1\right)\left(b+1\right)+1+\dfrac{5}{\left(a+1\right)\left(b+1\right)+1}-3\)

\(=\dfrac{\left(a+1\right)\left(b+1\right)+1}{5}+\dfrac{5}{\left(a+1\right)\left(b+1\right)+1}+\dfrac{4\left(a+1\right)\left(b+1\right)+4}{5}-3\)

\(\ge2+\dfrac{4.2\sqrt{a}.2\sqrt{b}+4}{5}-3=2+\dfrac{4.4\sqrt{ab}+4}{5}-3=3\)

Dấu ''='' xảy ra khi và chỉ khi a=b=1

黃旭熙.
3 tháng 8 2021 lúc 21:10

C28.1

Ta có VT=\(\dfrac{a^4b^2}{a^2b+b}+\dfrac{b^4c^2}{b^2c+c}+\dfrac{c^4a^2}{c^2a+a}\ge\dfrac{\left(a^2b+b^2c+c^2a\right)^2}{a^2b+b^2c+c^2a+a+b+c}\)

Vì \(\left(a^2b+b^2c+c^2a\right)^3\ge\left(a+b+c\right)^3\) ( Theo bđt holder)

\(\Leftrightarrow a^2b+b^2c+c^2a\ge a+b+c\)

\(\Rightarrow VT\ge\dfrac{\left(a^2b+b^2c+c^2a\right)^2}{2\left(a^2b+b^2c+c^2a\right)}=\dfrac{a^2b+b^2c+c^2a}{2}\ge\dfrac{3\sqrt[3]{\left(abc\right)^3}}{2}=\dfrac{3}{2}\)

Dấu ''='' xảy ra khi a=b=c