Xét ba số không âm x, y, z thỏa mãn x + y + z = 3 và \(x\le y\le z\). Tìm giá trị nhỏ nhất của biểu thức \(P=\dfrac{x}{y^3+16}+\dfrac{y}{z^3+16}+\dfrac{z}{x^3+16}\)
Với x,y,z là 3 số thực dương thỏa mãn x+y+z=3,tìm giá trị nhỏ nhất của biểu thức
P=\(\dfrac{x}{\sqrt{y}+\sqrt{z}}+\dfrac{y}{\sqrt{z}+\sqrt{x}}+\dfrac{z}{\sqrt{x}+\sqrt{y}}+\dfrac{3\left(x+y\right)\left(y+z\right)\left(z+x\right)}{32}\)
Cho ba số thực x, y, z không âm thỏa mãn \(2^x+4^y+8^z=4\). Gọi M, N lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của biểu thức \(S=\dfrac{x}{6}+\dfrac{y}{3}+\dfrac{z}{2}\). Đặt \(T=2M+6N\). Khẳng định nào dưới đây đúng?
A. \(T\in\left(1,2\right)\) B. \(T\in\left(2,3\right)\) C. \(T\in\left(3,4\right)\) D. \(T\in\left(4,5\right)\)
Giải chi tiết cho mình với ạ, mình cảm ơn nhiều ♥
Đặt \(\left(\dfrac{x}{6};\dfrac{y}{3};\dfrac{z}{2}\right)=\left(a;b;c\right)\Rightarrow2^{6a}+4^{3b}+8^{2c}=4\)
\(\Leftrightarrow64^a+64^b+64^c=4\)
Áp dụng BĐT Cô-si:
\(4=64^a+64^b+64^c\ge3\sqrt[3]{64^{a+b+c}}\Rightarrow64^{a+b+c}\le\dfrac{64}{27}\)
\(\Rightarrow a+b+c\le log_{64}\left(\dfrac{64}{27}\right)\Rightarrow M=log_{64}\left(\dfrac{64}{27}\right)\)
Lại có: \(x;y;z\ge0\Rightarrow a;b;c\ge0\)
\(\Rightarrow\left\{{}\begin{matrix}64^a\ge1\\64^b\ge1\\64^c\ge1\end{matrix}\right.\) \(\Rightarrow\left(64^b-1\right)\left(64^c-1\right)\ge0\)
\(\Rightarrow64^{b+c}+1\ge64^b+64^c\) (1)
Lại có: \(b+c\ge0\Rightarrow64^{b+c}\ge1\Rightarrow\left(64^a-1\right)\left(64^{b+c}-1\right)\ge0\)
\(\Rightarrow64^{a+b+c}+1\ge64^a+64^{b+c}\) (2)
Cộng vế (1);(2) \(\Rightarrow4=64^a+64^b+64^c\le64^{a+b+c}+2\)
\(\Rightarrow64^{a+b+c}\ge2\Rightarrow a+b+c\ge log_{64}2\)
\(\Rightarrow N=log_{64}2\)
\(\Rightarrow T=2log_{64}\left(\dfrac{64}{27}\right)+6log_{64}\left(2\right)\approx1,4\)
Cho \(x,y,z\) không âm, không đồng thời bằng \(0\) và thỏa \(\dfrac{1}{x+1}+\dfrac{1}{y+2}+\dfrac{1}{z+3}\le1\). Tìm giá trị nhỏ nhất của \(P=x+y+z+\dfrac{1}{x+y+z}\)
Ta có \(\dfrac{1}{x+1}+\dfrac{1}{y+2}+\dfrac{1}{z+3}\ge\dfrac{9}{x+y+z+6}\), do đó:
\(\dfrac{9}{x+y+z+6}\le1\)
\(\Leftrightarrow x+y+z\ge3\)
Đặt \(x+y+z=t\left(t\ge3\right)\). Khi đó \(P=t+\dfrac{1}{t}\)
\(P=\dfrac{t}{9}+\dfrac{1}{t}+\dfrac{8}{9}t\)
\(\ge2\sqrt{\dfrac{t}{9}.\dfrac{1}{t}}+\dfrac{8}{9}.3\)
\(=\dfrac{2}{3}+\dfrac{24}{9}\)
\(=\dfrac{10}{3}\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}t=x+y+z=3\\x+1=y+2=z+3\end{matrix}\right.\)
\(\Leftrightarrow\left(x,y,z\right)=\left(2,1,0\right)\)
Vậy \(min_P=\dfrac{10}{3}\Leftrightarrow\left(x,y,z\right)=\left(2,1,0\right)\)
Cho ba số thực dương x,y,z thỏa mãn điều kiện x + y +z = xyz .Tìm giá trị nhỏ nhất của biểu thức Q = \(\dfrac{y+2}{x^2}+\dfrac{z+2}{y^2}+\dfrac{x+2}{z^2}\)
\(\text{Cho 3 số dương x, y, z thỏa mãn x+y+z=2 tìm giá trị nhỏ nhất của biểu thức A =}\dfrac{2}{x}+\dfrac{8}{9y}+\dfrac{18}{25z}\)
Lời giải:
Áp dụng BĐT Bunhiacopxky:
\(\left(\frac{2}{x}+\frac{8}{9y}+\frac{18}{25z}\right)(x+y+z)\geq (\sqrt{2}+\sqrt{\frac{8}{9}}+\sqrt{\frac{18}{25}})^2\)
$\Leftrightarrow A.2\geq \frac{2312}{225}$
$\Leftrightarrow A\geq \frac{1156}{225}$
Vậy $A_{\min}=\frac{1156}{225}$
Cho các số thực x, y, z thỏa mãn \(x^2+y^2+z^2=5\) và x - y + z = 3 . Giá trị nhỏ nhất của biểu thức \(P=\dfrac{x+y-2}{z+2}\) bằng
A. \(\dfrac{1}{2}\) B. \(0\) C. \(\dfrac{-36}{23}\) D. \(\dfrac{-13}{4}\)
Cho 3 số thực x, y, z thay đổi thỏa mãn x + y + z = 1. Tìm giá trị nhỏ nhất của biểu thức
\(P=\dfrac{1}{2023xz}+\dfrac{1}{2023yz}\)
\(P=\dfrac{1}{2023}\dfrac{1}{z}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)=\dfrac{1}{2023.z}\dfrac{x+y}{xy}\)
Ap dung BDT cosi taco
\(P\ge\dfrac{1}{2023z}.\dfrac{x+y}{\dfrac{\left(x+y\right)^2}{4}}=\dfrac{4}{2023z}\dfrac{1}{x+y}\)
<->\(P\ge\dfrac{4}{2023}\dfrac{1}{z\left(1-z\right)}=\dfrac{4}{2023}\dfrac{1}{-z^2+z}=\dfrac{4}{2023}\dfrac{1}{-\left(z-\dfrac{1}{2}\right)^2+\dfrac{1}{4}}\)
\(< =>P\ge\dfrac{4}{2023}\dfrac{1}{\dfrac{1}{4}}=\dfrac{16}{2023}\)
\(P_{min}=\dfrac{16}{2023}\Leftrightarrow Z=\dfrac{1}{2},x=y=\dfrac{1}{4}\)
cho ba số thực dương x,y,z thỏa mãn điều kiện x2≥y+z .Tìm giá trị nhỏ nhất của biểu thức : P = \(\dfrac{1}{x^2}\left(y^2+z^2\right)+\dfrac{7x^2}{2}\left(\dfrac{1}{y^2}+\dfrac{1}{z^2}\right)+2007\)
Lời giải:
Sửa: $x^2\geq y^2+z^2$
Áp dụng BĐT Cauchy-Schwarz:
$P\geq \frac{y^2+z^2}{x^2}+\frac{7x^2}{2}.\frac{4}{y^2+z^2}+2007$
$=\frac{y^2+z^2}{x^2}+\frac{14x^2}{y^2+z^2}+2007$
$=\frac{y^2+z^2}{x^2}+\frac{x^2}{y^2+z^2}+\frac{13x^2}{y^2+z^2}+2007$
$\geq 2+\frac{13x^2}{y^2+z^2}+2007$ (áp dụng BĐT Cô-si)
$\geq 2+13+2007=2022$ (do $x^2\geq y^2+z^2$)
Vậy $P_{\min}=2022$
1.cho x > 0. tìm GTNN của A = \(\dfrac{3x^4+16}{x^3}\)
2. cho x,y,z > 0 thỏa mãn x+y+z=2. tìm GTNN của biểu thức:
P=\(\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\)
giúp mình với ạ, mình đang cần gấp trong tối nay ạ.