Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Anh Quynh
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 9 2021 lúc 23:03

a: Xét tứ giác ENMF có 

\(\widehat{ENF}=\widehat{EMF}\left(=90^0\right)\)

Do đó: ENMF là tứ giác nội tiếp

b: Xét tứ giác DNIM có 

\(\widehat{DNI}+\widehat{DMI}=180^0\)

Do đó: DNIM là tứ giác nội tiếp

Edogawa Conan
8 tháng 9 2021 lúc 23:09

E F D M N I

a, Xét ΔENF vuông tại N

⇒ EF là đường kính của đường tròn có tâm là trung điểm của EF

 Xét ΔEMF vuông tại M

⇒ EF là đường kính của đường tròn có tâm là trung điểm của EF

 ⇒ M,N,E,F cùng thuộc 1 đường tròn đường kính EF

b,Tương tự

Anh Quynh
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 9 2021 lúc 21:49

a: Xét tứ giác ENMF có 

\(\widehat{ENF}=\widehat{EMF}=90^0\)

Do đó: ENMF là tứ giác nội tiếp

hay E,N,M,F cùng thuộc 1 đường tròn

b: Xét tứ giác DMIN có 

\(\widehat{DNI}+\widehat{DMI}=180^0\)

Do đó: DMIN là tứ giác nội tiếp

hay D,M,I,N cùng thuộc 1 đường tròn

Anh Quynh
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 9 2021 lúc 23:27

Ta có: ΔDNI vuông tại N

nên ΔDNI nội tiếp đường tròn đường kính DI(1)

Ta có: ΔDMI vuông tại M

nên ΔDMI nội tiếp đường tròn đường kính DI(2)

Từ (1) và (2) suy ra D,M,I,N cùng thuộc 1 đường tròn

Zero Two
Xem chi tiết
Nie =)))
10 tháng 9 2021 lúc 7:07

Cách 1 : 

Ta có: ΔDNI vuông tại N

nên ΔDNI nội tiếp đường tròn đường kính DI(1)

Ta có: ΔDMI vuông tại M

nên ΔDMI nội tiếp đường tròn đường kính DI(2)

Từ (1) và (2) suy ra D,M,I,N cùng thuộc 1 đường tròn

Ht , đúng thì k nhé

Khách vãng lai đã xóa
Nie =)))
10 tháng 9 2021 lúc 7:09

Cách 2 : sử dụng phương pháp tứ giác nội tiếp

Xét tứ giác DMIN có 

ˆDNI+ˆDMI=1800DNI^+DMI^=1800

Do đó: DMIN là tứ giác nội tiếp

hay D,M,I,N cùng thuộc một đường tròn

Ht nha

Khách vãng lai đã xóa
Anh Quynh
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 8 2021 lúc 23:12

a: Xét tứ giác FNIM có 

\(\widehat{FNI}+\widehat{FMI}=180^0\)

nên FNIM là tứ giác nội tiếp

hay F,N,I,M cùng thuộc 1 đường tròn

b: Xét tứ giác DNME có 

\(\widehat{DNE}=\widehat{DME}\left(=90^0\right)\)

nên DNME là tứ giác nội tiếp

hay D,N,M,E cùng thuộc 1 đường tròn

Đạt Lê
16 tháng 8 2021 lúc 23:23

http://bblink.com/4gEiLOt

NguyenBaoKhanh
Xem chi tiết
Akai Haruma
18 tháng 11 2023 lúc 22:10

Lời giải:
1. 

Xét tứ giác $HNMK$ có $\widehat{HNK}=\widehat{HMK}=90^0$. Mà 2 góc này cùng nhìn cạnh $HK$ nên $HNMK$ là tứ giác nội tiếp.

$\Rightarrow H,N,M,K$ cùng thuộc 1 đường tròn.

2.

Xét tứ giác $INPM$ có tổng 2 góc đối nhau $\widehat{INP}+\widehat{IMP}=90^0+90^0=180^0$ nên $INPM$ là tứ giác nội tiếp.

$\Rightarrow I,N, P,M$ cùng thuộc 1 đường tròn.

Akai Haruma
18 tháng 11 2023 lúc 22:12

Hình vẽ:

NguyenBaoKhanh
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 11 2023 lúc 19:27

1: Xét tứ giác HNMK có

\(\widehat{HNK}=\widehat{HMK}=90^0\)

=>HNMK là tứ giác nội tiếp đường tròn đường kính HK

=>H,N,M,K cùng thuộc 1 đường tròn

2: Xét tứ giác INPM có

\(\widehat{INP}+\widehat{IMP}=90^0+90^0=180^0\)

=>INPM là tứ giác nội tiếp

=>I,N,P,M cùng thuộc 1 đường tròn

Anh Quynh
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 10 2021 lúc 22:00

Xét \(\left(\dfrac{EK}{2}\right)\) có

ΔKME nội tiếp đường tròn

KE là đường kính

Do đó: ΔKME vuông tại M

Xét \(\left(\dfrac{FK}{2}\right)\) có

ΔFNK nội tiếp đường tròn

FK là đường kính

Do đó: ΔFNK vuông tại N

Xét tứ giác DMKN có \(\widehat{DMK}=\widehat{DNK}=\widehat{MDN}=90^0\)

nên DMKN là hình chữ nhật

hay D,M,K,N cùng thuộc 1 đường tròn

Cô Hoàng Huyền
Xem chi tiết
VU KHOI NGUYEN
10 tháng 11 2021 lúc 22:27
Khách vãng lai đã xóa