Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
BHQV
Xem chi tiết
Park Chaeyoung
7 tháng 1 2023 lúc 21:38

Ta có tính chất : 

\(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)

\(\rightarrow A=\left|x+5\right|+\left|x+2\right|+\left|x-7\right|+\left|x-8\right|\ge\left|x+5+x+2+x-7+x-8\right|\)

​​\(\rightarrow A\ge\left|4x-8\right|\)

Vì \(\left|4x-8\right|\ge0\forall x\in R\) nên :

\(\rightarrow A\ge0\forall x\in R\)

Dấu "= " xảy ra khi : 

\(\left|4x-8\right|=0\) \(\Leftrightarrow4x-8=0\) 

                     \(\Leftrightarrow x=2\)

Vậy \(A_{min}=0\Leftrightarrow x=2\)

Phạm Công Nguyên
Xem chi tiết
Hà Linh
21 tháng 6 2017 lúc 20:44

Tìm GTNN của biểu thức:

a) A = |x+5|+|x+17|

Giải

Ta có : A = |x+5|+|x+17| \(\ge\) |x+5+x+17|

A = |-x-5|+|x+17| \(\ge\) |-x-5+x+17| = | -12 | = 12

Dấu bằng xảy ra khi - 17 \(\le\) x \(\le\) -5

Vậy MinA=12 khi - 17 \(\le\) x \(\le\) -5

b) B = |x+8|+|x+13|+|x+50|

Giải

B = |x+8|+|x+13|+|x+50| \(\ge\) (| x+8|+|-50-x |)+|x+13|

= (| x+8-50-x |)+|x+13|

= |-42| + |x+13|

= 42 + |x+13| \(\ge\) 42

Vậy MinB = 42 khi và chỉ khi:

\(\left\{{}\begin{matrix}x+8\ge0\\x+13=0\\x+50\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge-8\\x=-13\\x\ge-50\end{matrix}\right.\) \(\Rightarrow x=-13\)

c) C = |x+5|+|x+2|+|x−7|+|x−8|

Giải

C = |x+5|+|x+2|+|x−7|+|x−8|

\(\ge\) |x+5| + |x+2| + |7-x| + |8-x|

\(\ge\) |x+5+7-x| + |x+2+8-x|

\(\ge\) |12| + |10|

\(\ge\) 12 + 10 \(\ge\) 22

Vậy MinC = 22 khi và chỉ khi :

-5 \(\le\) x \(\le\) 8 và -2 \(\le\) x \(\le\) 7 \(\Leftrightarrow\) -2 \(\le\) x \(\le\) 7

d) D = |x+3|+|x−2|+|x−5|

Giải

D = |x+3|+|x−2|+|x−5|

\(\ge\) ( |x+3|+|5-x| ) + |x-2| \(\ge\) | x+3+5-x | + | x-2 | \(\ge\) | 8 | + | x-2 | \(\ge\) 8 + | x-2 | \(\ge\) 8 Vậy MinD = 8 khi và chỉ khi: \(\left\{{}\begin{matrix}x+3\ge0\\x-2=0\\5-x\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge-3\\x=2\\x\le5\end{matrix}\right.\) \(\Rightarrow x=2\)
Chitanda Eru (Khối kiến...
9 tháng 9 2018 lúc 21:05

Tìm GTNN của biểu thức:

a) A = |x+5|+|x+17|

Giải

Ta có : A = |x+5|+|x+17| ≥≥|x+5+x+17|

A = |-x-5|+|x+17| |-x-5+x+17| = | -12 | = 12

Dấu bằng xảy ra khi - 17 x -5

Vậy MinA=12 khi - 17 x -5

b) B = |x+8|+|x+13|+|x+50|

Giải

B = |x+8|+|x+13|+|x+50| (| x+8|+|-50-x |)+|x+13|

= (| x+8-50-x |)+|x+13|

= |-42| + |x+13|

= 42 + |x+13| ≥≥42

Vậy MinB = 42 khi và chỉ khi:

x+8 ≥ 0 ⇒x ≥ −8

x+13 = 0 => x = −13 .Vậy x=-13

x+50 ≥ 0 => x ≥ −50

c) C = |x+5|+|x+2|+|x−7|+|x−8|

Giải

C = |x+5|+|x+2|+|x−7|+|x−8|

=> |x+5| + |x+2| + |7-x| + |8-x|

|x+5+7-x| + |x+2+8-x| = |12| + |10| =12 + 10 = 22

Vậy MinC = 22 khi và chỉ khi :

-5 x 8 và -2 x 7 -2 x 7

Đoàn Tuấn Anh
22 tháng 9 2019 lúc 14:09

Tìm GTNN của biểu thức:

a) A = |x+5|+|x+17|

Giải

Ta có : A = |x+5|+|x+17| ≥≥ |x+5+x+17|

A = |-x-5|+|x+17| ≥≥ |-x-5+x+17| = | -12 | = 12

Dấu bằng xảy ra khi - 17 ≤≤ x ≤≤ -5

Vậy MinA=12 khi - 17 ≤≤ x ≤≤ -5

b) B = |x+8|+|x+13|+|x+50|

Giải

B = |x+8|+|x+13|+|x+50| ≥≥ (| x+8|+|-50-x |)+|x+13|

= (| x+8-50-x |)+|x+13|

= |-42| + |x+13|

= 42 + |x+13| ≥≥ 42

Vậy MinB = 42 khi và chỉ khi:

⎧⎪⎨⎪⎩x+8≥0x+13=0x+50≥0{x+8≥0x+13=0x+50≥0 ⇒⎧⎪⎨⎪⎩x≥−8x=−13x≥−50⇒{x≥−8x=−13x≥−50 ⇒x=−13⇒x=−13

c) C = |x+5|+|x+2|+|x−7|+|x−8|

Giải

C = |x+5|+|x+2|+|x−7|+|x−8|

\(\ge\) |x+5| + |x+2| + |7-x| + |8-x|

≥≥ |x+5+7-x| + |x+2+8-x|

≥≥ |12| + |10|

≥≥ 12 + 10 ≥≥ 22

Vậy MinC = 22 khi và chỉ khi :

-5 ≤≤ x ≤≤ 8 và -2 x ≤≤ 7 ⇔⇔ -2 ≤≤ x ≤≤ 7

d) D = |x+3|+|x−2|+|x−5|

Giải

D = |x+3|+|x−2|+|x−5|

≥≥ ( |x+3|+|5-x| ) + |x-2| ≥≥ | x+3+5-x | + | x-2 | ≥≥ | 8 | + | x-2 | ≥≥ 8 + | x-2 | ≥≥ 8 Vậy MinD = 8 khi và chỉ khi: ⎧⎪⎨⎪⎩x+3≥0x−2=05−x≥0{x+3≥0x−2=05−x≥0 ⇒⎧⎪⎨⎪⎩x≥−3x=2x≤5⇒{x≥−3x=2x≤5 ⇒x=2

Nguyễn Phương Ngọc
Xem chi tiết
Girl
13 tháng 3 2018 lúc 18:03

Đặt: \(\left|x-2017\right|=t\ge0\) ta có: \(l=\frac{t+2017}{t+2018}=\frac{t+2018-1}{t+2018}=1-\frac{1}{t+2018}\ge1-\frac{1}{2018}=\frac{2017}{2018}\)

Dấu "=" xảy ra khi: \(t=0\Leftrightarrow x=2017\)

Tề Mặc
14 tháng 3 2018 lúc 18:00

Đặt: |x−2017|=t≥0 ta có: l=t+2017t+2018 =t+2018−1t+2018 =1−1t+2018 ≥1−12018 =20172018 

Dấu "=" xảy ra khi: t=0⇔x=2017

 ...

..

tth_new
29 tháng 12 2018 lúc 8:11

\(A=\frac{\left|x-2017\right|+2017}{\left|x-2017\right|+2018}=1-\frac{1}{\left|x-2017\right|+2018}\)

A bé nhất khi \(\frac{1}{\left|x-2017\right|+2018}\) lớn nhất.

Mà \(\frac{1}{\left|x-2018\right|+2018}\le\frac{1}{2018}\forall x\) (do \(\left|x-2018\right|\ge0\forall x\))

Suy ra \(A\ge1-\frac{1}{2018}=\frac{2017}{2018}\)

Dấu "=" xảy ra \(\Leftrightarrow\left|x-2017\right|=0\Leftrightarrow x=2017\)

Vậy \(A_{min}=\frac{2017}{2018}\Leftrightarrow x=2017\)

Ekachido Rika
Xem chi tiết
Phước Lộc
6 tháng 3 2020 lúc 20:57

\(A=\frac{\left|x-2017\right|+2018}{\left|x-2017\right|+2019}\)

\(A=\frac{\left|x-2017\right|+2019-1}{\left|x-2017\right|+2019}\)

\(A=1-\frac{1}{\left|x-2017\right|+2019}\)

A nhỏ nhất khi \(1-\frac{1}{\left|x-2017\right|+2019}\)nhỏ nhất

khi \(\frac{1}{\left|x-2017\right|+2019}\)lớn nhất

khi \(\left|x-2017\right|+2019\)nhỏ nhất

mà |x - 2017| \(\ge0\)

=> |x - 2017| + 2019 \(\ge2019\)

Vậy A nhỏ nhất khi A = 2019 khi x - 2017 = 0 => x = 2017

Khách vãng lai đã xóa
Hằng😁😁😁😁
6 tháng 3 2020 lúc 20:57

\(A=\frac{\backslash x-2017\backslash+2018}{\backslash x-2017\backslash+2019}\) 

\(A=\frac{2018}{2019}\)

Khách vãng lai đã xóa
Trí Tiên
6 tháng 3 2020 lúc 20:58

Ta có : \(A=\frac{\left|x-2017\right|+2018}{\left|x-2017\right|+2019}=\frac{\left|x-2017\right|+2019-1}{\left|x-2017\right|+2019}\)

\(=1-\frac{1}{\left|x-2017\right|+2019}\)

Ta có : \(\left|x-2017\right|\ge0\)

\(\Rightarrow\left|x-2017\right|+2019\ge2019\)

\(\Rightarrow\frac{1}{\left|x-2017\right|+2019}\le\frac{1}{2019}\)

\(\Rightarrow-\frac{1}{\left|x-2017\right|+2019}\ge-\frac{1}{2019}\)

\(\Rightarrow1-\frac{1}{\left|x-2017\right|+2019}\ge1-\frac{1}{2019}=\frac{2018}{2019}\)

Hay : \(A\ge\frac{2018}{2019}\)

Dấu "=" xảy ra \(\Leftrightarrow\left|x-2017\right|=0\Leftrightarrow x=2017\)

Vậy : min \(A=\frac{2018}{2019}\) tại \(x=2017\)

Khách vãng lai đã xóa
Trần Thị Hảo
Xem chi tiết
Nguyễn Việt Anh
7 tháng 11 2019 lúc 20:47

Ta có:

|x−2015|+|x−2016|+|x−2017||x−2015|+|x−2016|+|x−2017|

=|x−2016|+|x−2015|+|x−2017|=|x−2016|+|x−2015|+|x−2017|

=|x−2016|+(|x−2015|+|x−2017|)=|x−2016|+(|x−2015|+|x−2017|)

∗)∗) Áp dụng BĐT |a|+|b|≥|a+b||a|+|b|≥|a+b| ta có:

|x−2015|+|x−2017|=|x−2015|+|x−2017|= |x−2015|+|2017−x||x−2015|+|2017−x|

≥|x−2015+2017−x|=|2|=2≥|x−2015+2017−x|=|2|=2

∗)∗) Dễ thấy: |x−2016|≥0∀x|x−2016|≥0∀x

⇔|x−2015|+|x−2016|+|x−2017|⇔|x−2015|+|x−2016|+|x−2017| ≥2≥2

Đẳng thức xảy ra ⇔⎧⎩⎨⎪⎪x−2015≥0x−2016=0x−2017≤0⇔⎧⎩⎨⎪⎪x≥2015x=2016x≤2017⇔{x−2015≥0x−2016=0x−2017≤0⇔{x≥2015x=2016x≤2017 ⇔x=2016⇔x=2016

Vậy GTNNGTNN của biểu thức là 2⇔x=2016

Khách vãng lai đã xóa
Vũ Trung Hiếu
Xem chi tiết
Vũ Hoàng Trung
27 tháng 2 2020 lúc 15:15

Sao chép

Khách vãng lai đã xóa
Nguyễn Như Quỳnh
Xem chi tiết
Quốc Đạt
7 tháng 2 2017 lúc 19:24

\(\left|x+8\right|+\left|x+13\right|=\left|x+8\right|+\left|-x-13\right|\)

Áp dụng bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có :

\(\left|x+8\right|+\left|-x-13\right|\ge\left|x+8-x-13\right|=\left|-5\right|=5\)

\(\Rightarrow A\ge\left|x+50\right|+5\ge5\)

Dấu "=" xảy ra <=> |x + 50| = 0 => x = - 50

Vậy gtnn của A là 5 tại x = - 50

khoimzx
Xem chi tiết
Hồng Phúc
20 tháng 2 2021 lúc 16:54

Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\):

\(A=\left|x-3\right|+\left|x-1\right|+\left|x+1\right|+\left|x+3\right|\)

\(=\left|3-x\right|+\left|x+3\right|+\left|1-x\right|+\left|x+1\right|\)

\(\ge\left|3-x+x+3\right|+\left|1-x+x+1\right|=8\)

\(minA=8\Leftrightarrow\left\{{}\begin{matrix}\left(3-x\right)\left(x+3\right)\ge0\\\left(1-x\right)\left(x+1\right)\ge0\end{matrix}\right.\Leftrightarrow-1\le x\le1\)

Diệp Nguyễn
Xem chi tiết
An Trần
30 tháng 9 2017 lúc 10:58

\(A=\left|x-1004\right|-\left|x+1003\right|\)

Áp dụng BĐT \(\left|a\right|-\left|b\right|\le\left|a-b\right|\)

\(\Leftrightarrow\left|x-1004\right|-\left|x+1003\right|\le\left|x-1004-x-1003\right|\)

\(\Leftrightarrow\left|x-1004\right|-\left|x+1003\right|\le2007\)

Vậy GTLN của A là 2007. Dấu "=" xảy ra khi \(x\ge1004\) hoặc \(x\le1003\).

An Trần
30 tháng 9 2017 lúc 11:00

- Câu B dùng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) làm tương tự nhé bạn!