Những câu hỏi liên quan
nub
Xem chi tiết

\(1,VT=2\left(a^3+b^3+c^3\right)+2\left(a^2b^2+b^2c^2+c^2a^2\right)\)

Ta có \(a^3+b^3\ge ab\left(a+b\right)\)

              \(b^3+c^3\ge bc\left(b+c\right)\)

            \(c^3+a^3\ge ca\left(c+a\right)\)

Cộng từng vế các bđt trên  ta được

\(VT\ge ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)+2\left(a^2b^2+b^2c^2+c^2a^2\right)\)

Bây giờ ta cm:

\(a^2b^2+b^2c^2+c^2a^2\ge abc\left(a+b+c\right)\)

Bất đẳng thức trên luôn đúng

Vậy bđt được chứng minh

Dấu "=" xảy ra khi a=b=c

Bình luận (0)
 Khách vãng lai đã xóa
Cậu Bé Ngu Ngơ
2 tháng 4 2020 lúc 17:26

Mấy bài này dễ mà, tách ra rồi Cauchy là xong hết =))

Bình luận (0)
 Khách vãng lai đã xóa
tth_new
2 tháng 4 2020 lúc 19:02

1/ \(VT-VP=\Sigma\left(a+b+c^2\right)\left(a-b\right)^2\ge0\)

2/Nếu đề như trên thì mình cho rằng đề sai. Thử với \(a=b=c=1\)

Bình luận (0)
 Khách vãng lai đã xóa
Phạm Tuấn Long
Xem chi tiết
Khôi Bùi
20 tháng 3 2019 lúc 19:06

a ) Ta có : \(\left(ab+1\right)^2\ge4ab\)

\(\Leftrightarrow a^2b^2+2ab+1-4ab\ge0\)

\(\Leftrightarrow\left(ab-1\right)^2\ge0\)

=> BĐT luôn đúng

Dấu " = " xảy ra \(\Leftrightarrow ab=1\)

b ) Áp dụng BĐT Bunhiacopxki , ta có :

\(\left(ab+1.2\right)^2\le\left(a^2+1^2\right)\left(b^2+2^2\right)=\left(a^2+1\right)\left(b^2+4\right)\)

Dấu " = " xảy ra \(\Leftrightarrow2a=b\)

c ) Áp dụng BĐT Cô - si cho 2 số không âm , ta có :

\(4a^2+b^2\ge2\sqrt{4a^2.b^2}=4ab\)

\(\Rightarrow2\left(4a^2+b^2\right)\ge4a^2+4ab+b^2=\left(2a+b\right)^2\)

Dấu " = " xảy ra \(\Leftrightarrow2a=b\)

d ) \(x^5+y^5\ge xy\left(x^3+y^3\right)\)

\(\Leftrightarrow x^5-x^4y-y^4x+y^5\ge0\)

\(\Leftrightarrow\left(x^4-y^4\right)\left(x-y\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\left(x+y\right)\left(x^2+y^2\right)\ge0\)

Vì x ; y > 0 => BĐT luôn đúng

Dấu " = " xảy ra \(\Leftrightarrow x=y\)

Bình luận (3)
Le Minh Hieu
Xem chi tiết
Phùng Minh Quân
18 tháng 12 2019 lúc 14:02

\(VT=\frac{\left(\sqrt[3]{abc}\right)^2}{2abc}+\Sigma\frac{a^2}{a^2\left(b+c\right)}\ge\frac{\left(a+b+c+\sqrt[3]{abc}\right)^2}{\Sigma a^2\left(b+c\right)+2abc}=\frac{\left(a+b+c+\sqrt[3]{abc}\right)^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

Bình luận (0)
 Khách vãng lai đã xóa
Nguyễn Thị Minh Thảo
Xem chi tiết
Nam Đỗ
Xem chi tiết
Nguyễn Hồng Phúc
Xem chi tiết
Khởi My
Xem chi tiết
Wang Soo Yi
Xem chi tiết
 Mashiro Shiina
12 tháng 4 2018 lúc 22:12

a) Áp dụng Cauchy-Schwarz:

\(\left(a+b\right)^2\le\left(1^2+1^2\right)\left(a^2+b^2\right)=2\left(a^2+b^2\right)\)

b) Áp dụng AM-GM:

\(\left\{{}\begin{matrix}a^2+b^2\ge2ab\\b^2+c^2\ge2bc\\a^2+c^2\ge2ac\end{matrix}\right.\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2ab+2bc+2ac\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)

\(a^2+b^2+c^2\ge ab+bc+ac\) (cm ở trên r nên khỏi cm lại đi)

\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ac\ge3\left(ab+bc+ac\right)\)

\(\Rightarrow3\left(ab+bc+ac\right)\le\left(a+b+c\right)^2\)

Kết hợp 2 điều trên:\(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\ge3\left(ab+bc+ac\right)\)

Bình luận (0)
kuroba kaito
12 tháng 4 2018 lúc 22:16

a)2(a2+b2) ≥ (a+b)2

⇔ 2a2+2b2 ≥ a2+2ab+b2

xét hiệu

⇔ 2a2+2b2-a2-2ab-b2 ≥ 0

⇔ a2-2ab+b2 ≥ 0

⇔ (a-b)2 ≥ 0 (luôn đúng )

=> đpcm

Bình luận (0)
nguyễn thị dương
12 tháng 4 2018 lúc 22:38

a )2(a^2+b^2)\(\ge\)(a+b)^2\(\Leftrightarrow\)2a^2+2b^2\(\ge\)a^2+b^2+2ab

\(\Leftrightarrow\)2a^2+2b^2-a^2-b^2-2ab\(\ge\)0

\(\Leftrightarrow\)(a-b)^2\(\ge\)0 (2)

(2) đúng nên 1 đúng

b )

chứng minh vế 1 3(a^2+b^2+c^2)\(\ge\)(a+b+c)^2

\(\Leftrightarrow\)3a^2+3b^2+3c^2-a^2-b^2-c^2-2ab-2bc-2ca\(\ge\)0

\(\Leftrightarrow\)2a^2+2b^2+2c^2-2ab-2ac-2bc\(\ge\)0

\(\Leftrightarrow\)(a-b)^2+(b-c)^2+(c-a)^2\(\ge\)0 luôn đúng

chứng minh vế 2 (a+b+c)^2\(\ge\)3(ab+bc+ca)

\(\Leftrightarrow\)a^2+b^2+c^2-2ab-2ac-2bc\(\ge\)0

cm như trên suy ra đpcm

Bình luận (0)
Trần Lê Anh Quân
Xem chi tiết