\(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)(1)
⇔\(a^2+2\left|ab\right|+b^2\ge a^2+2ab+b^2\)(vì 2 vế của (1) không âm )
⇔\(2\left|ab\right|\ge2ab\)
⇔\(\left|ab\right|\ge ab\) (luôn đúng )
=> đpcm
\(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)(1)
⇔\(a^2+2\left|ab\right|+b^2\ge a^2+2ab+b^2\)(vì 2 vế của (1) không âm )
⇔\(2\left|ab\right|\ge2ab\)
⇔\(\left|ab\right|\ge ab\) (luôn đúng )
=> đpcm
Chứng minh rằng:
a, \(2\left(a^4+b^4\right)\ge\left(a+b\right)\left(a^3+b^3\right)\)
b, \(3\left(a^4+b^4+c^4\right)\ge\left(a+b+c\right)\left(a^3+b^3+c^3\right)\)
c, \(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\ge a+b+c\)
d, \(a^2+b^2+c^2+d^2\ge ab+ac+ad\)
Chứng minh các bất đẳng thức sau:
a. \(\left(a^2+b^2\right)\left(x^2+y^2\right)\ge\left(ax+by\right)^2\)
b. \(\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)\ge\left(ax+by+cz\right)^2\)
CM BĐT:
a) \(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\)
b) \(\dfrac{a^2+b^2+c^2}{3}\ge\left(\dfrac{a+b+c}{3}\right)^2\)
c) \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
d) \(a^4+b^4+c^4\ge abc\left(a+b+c\right)\)
Cho a,b,c > 0
\(Cm:\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\frac{8}{9}\left(a+b+c\right)\left(ab+bc+ca\right)\)
Em mạn phép up lên CHH tí rồi mai em gỡ vì em cần gấp ạ ;3
Chứng minh bđt:
\(\left(a+b+c\right)\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{a+c}\right)\ge\dfrac{9}{2}\forall a,b,c>0\)
Chứng minh bất đẳng thức: \(4ab\left(a+b\right)\left(a+1\right)\left(a+b+1\right)+b^2\ge0\)
chứng minh bất đẳng thức với các số a,b,c là các số dương:
\(\sqrt{\left(a+b\right)\left(c+d\right)}\ge\sqrt{ac}+\sqrt{bd}\)
chứng minh bất đẳng thức sau:
a, \(\frac{\sqrt{a}+\sqrt{b}}{2}< \sqrt{\frac{a+b}{2}}\) với a>0,b>0, a khác b
b, \(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\) ≥ \(\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\)
cho a,b,c là 3 số dương thỏa mãn abc=1 chứng minh rằng
\(\frac{1}{a^3\left(b+c\right)}\)+\(\frac{1}{b^3\left(c+a\right)}\)+\(\frac{1}{c^3\left(a+b\right)}\)≥\(\frac{3}{2}\)