Cmr \(\dfrac{10^{2018}+53}{9}\) là 1 số tự nhiên.
CMR \(\frac{10^{2006}+53}{9}\)là 1 số tự nhiên
102006 +53 = 1000.....00053 có tổng các chữ số = 1 +0+0+...+0+5+3 = 9 chia hết cho 9
Nên 102006 +53 chia hết cho 9. Hay nói cách khác kết quả của phép chia là 1 số tự nhiên
a) tìm số nguyên n sao cho : n^3 +3 chia hết cho n-1
b) CMR : 10 ^ 2006 +53 / 9 là một số tự nhiên
a,(n^2+3)/(n-1) = n + 1 + 4/(n-1)
vậy cần tìm n để n-1 là ước của 4
suy ra n=2,3,5.
b,10^2006 luôn có tổng các chữ số bằng 1
=> 10^2006 + 53 luôn có tổng các chữ số bằng 9 do đó nó chia hết cho 9
=> (10^2006)+53)/9 là một số tự nhiên
tích nha
a,(n^2+3)/(n-1) = n + 1 + 4/(n-1)
vậy cần tìm n để n-1 là ước của 4
suy ra n=2,3,5
b,10^2006 luôn có tổng các chữ số bằng 1
=> 10^2006 + 53 luôn có tổng các chữ số bằng 9 do đó nó chia hết cho 9
=> (10^2006)+53)/9 là một số tự nhiên
tích mình đi
a,(n^2+3)/(n-1) = n + 1 + 4/(n-1)
vậy cần tìm n để n-1 là ước của 4
suy ra n=2,3,5.
b, 10^2006 luôn có tổng các chữ số bằng 1
=> 10^2006 + 53 luôn có tổng các chữ số bằng 9 do đó nó chia hết cho 9
=> (10^2006)+53)/9 là một số tự nhiên
CMR : \(\dfrac{10^{2006}+53}{9}\) là số tự nhiên
Ta có :
\(10^{2006}+53=\left(100....0\right)+53=10.....0053\)
Tổng các chữ số là :
\(1+0+0+....+0+5+3=9⋮9\)
\(\Leftrightarrow10^{2006}+53⋮9\)
\(\Leftrightarrow\dfrac{10^{2006}+53}{9}\in N\)
CMR: \(\dfrac{10^{2006}+53}{9}\) là một số tự nhiên.
\(10^{2006}\equiv1^{2006}\left(mod9\right)\equiv1\left(mod1\right)\).
Suy ra \(10^{2006}+53\equiv1+53\left(mod9\right)\equiv54\left(mod9\right)\equiv0\left(mod9\right)\).
Vì vậy \(\dfrac{10^{2006}+53}{9}\) là một số tự nhiên.
theo đề ta có:
\(\dfrac{10^{2006}+53}{9}=\dfrac{10^{2^{1003}}+53}{9}\)
= \(\dfrac{100^{^{1003}}+53}{9}\)
Mà \(10^{???}\) thì cũng ra kết quả có chữu số tận cùng là 0 và chữ số đầu là 1
Vậy: Nên ta có thể làm như sau
= \(\dfrac{100^{^{ }}+53}{9}\)
=\(17\)
và 17 là 1 số tự nhiên
có thể thử bất kì số 1000, 1000000, ..+ 53 \(⋮\) 9
Vì 10:9 dư 1
\(\Rightarrow10^{2006}:9dư1^{2006}\)
\(\Rightarrow10^{2006}:9dư1\)mà 53:9 dư 8
\(\Rightarrow10^{2006}+53⋮9\)
Một phân số có tử chia hết cho mẫu nên phân số đó là một số tự nhiên
\(\Rightarrow\)đpcm
chứng minh (102006+53) /9 là 1 số tự nhiên
Vì \(10^{2006}\)=100..000 (Có 2006 chữ số 0)
Tổng các chữ số của \(10^{2006}\)là 1+0+0+0+0+...+0+0=1
53 có tổng các chữ số là 5+3=8
Vì 1+8=9 =>\(10^{2006}\)+53 chia hết cho 9
Vậy \(\frac{10^{2006}+53}{9}\)là số tự nhiên
Chứng minh 10^2016+53/9 là số tự nhiên
Chứng minh rằng \(\frac{10^{2006}+53}{9}\)là 1 số tự nhiên
ta có: 10\(^{2006}\)+53/9=\(\frac{10..053}{9}\)bạn thấy số có tổng chia hết cho 9 vì 1+0...0+5+3=9 nên \(\frac{10^{2006}+53}{9}\)chia hết cho 9 bạn thấy chỗ 10..053 là phải chú thích là có 2003 số 0 nhé
Cậu cho mình xin 1 like cảm ơn nhìu iu quá
Ta có: \(10^{2006}\equiv1\left(mod9\right)\)
\(53\equiv8\left(mod9\right)\)
\(\Rightarrow10^{2006}+53\equiv9\left(mod9\right)\)hay \(10^{2006}+53\equiv0\left(mod9\right)\)
hay\(10^{2006}+53⋮9\)
\(\frac{10^{2006}+53}{9}\)là số tự nhiên
CMR \(\frac{10^{2006}+53}{9}\) là 1 số tự nhiên
\(Help\) \(me\)
Vì tổng các chữ số của \(10^n\)luôn là 1 nên tổng các chữ số của \(10^{2006}\)là 1
Do đó \(\left(10^{2006}+53\right)\)chia hết cho 9 ( vì tổng các chữ số là 9)
Suy ra \(\frac{10^{2006}+53}{9}\)là 1 số tự nhiên
Ta có: 102006 =1000000...000(2006 chữ số 0)
Nên tổng các chữ số của 102006 là 1
Tổng các chữ số của 53 là 8
Nên 102006 và 53 có tổng các chữ số là 1+8=9
Mà 1 số chia hết cho 9 chỉ khi tổng các chữ số của nó chia hết cho 9 và 9 chia hết cho 9
=>102006+53 chia hết cho 9
=>102006+53/9 là 1 STN
chứng minh rằng tổng A =\(\dfrac{1}{51}+\dfrac{1}{52}+\dfrac{1}{53}+............+\dfrac{1}{100}\)
không phải là số tự nhiên
Có thể làm như sau
Ta thấy \(\dfrac{1}{51}< \dfrac{1}{50}\)
\(\dfrac{1}{52}< \dfrac{1}{50}\)
.......
\(\dfrac{1}{100}< \dfrac{1}{50}\)
=> A = \(\dfrac{1}{50}+\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}< \dfrac{1}{50}.50=1\)
Lại có
\(\dfrac{1}{51}>\dfrac{1}{100}\)
\(\dfrac{1}{52}>\dfrac{1}{100}\)
.......
\(\dfrac{1}{99}>\dfrac{1}{100}\)
=> A = \(\dfrac{1}{51}+\dfrac{1}{52}+\dfrac{1}{53}+...+\dfrac{1}{100}>\dfrac{1}{100}.50=\dfrac{1}{2}\)
=> \(\dfrac{1}{2}< A< 1\)
Vậy A không phải số tự nhiên